Reputation: 1137
How can I join Series A
multiindexed by (A, B)
with Series B
indexed by A
?
Upvotes: 1
Views: 65
Reputation: 879939
Currently the only way is to bring the indices to a common footing -- e.g. move the B
level of the series_A
MultiIndex to a column so that both series_A
and series_B
are indexed only by A
:
import pandas as pd
series_A = pd.Series(1, index=pd.MultiIndex.from_product([['A1', 'A4'],['B1','B2']], names=['A','B']), name='series_A')
# A B
# A1 B1 1
# B2 1
# A4 B1 1
# B2 1
# Name: series_A, dtype: int64
series_B = pd.Series(2, index=pd.Index(['A1', 'A2', 'A3'], name='A'), name='series_B')
# A
# A1 2
# A2 2
# A3 2
# Name: series_B, dtype: int64
tmp = series_A.to_frame().reset_index('B')
result = tmp.join(series_B, how='outer').set_index('B', append=True)
print(result)
yields
series_A series_B
A B
A1 B1 1.0 2.0
B2 1.0 2.0
A2 NaN NaN 2.0
A3 NaN NaN 2.0
A4 B1 1.0 NaN
B2 1.0 NaN
Another way to join them would be to unstack the B
level from series_A
:
In [215]: series_A.unstack('B').join(series_B, how='outer')
Out[215]:
B1 B2 series_B
A
A1 1.0 1.0 2.0
A2 NaN NaN 2.0
A3 NaN NaN 2.0
A4 1.0 1.0 NaN
unstack
moves the B
index level to the column index. Thus the theme is the
same (bring the indices to a common footing), though the result is different.
Upvotes: 2