Reputation: 2952
I have written a simple Fibonacci function as an exercise in C++ (using Visual Studio) to test Tail Recursion and to see how it works.
this is the code:
int fib_tail(int n, int res, int next) {
if (n == 0) {
return res;
}
return fib_tail(n - 1, next, res + next);
}
int main()
{
fib_tail(10,0,1); //Tail Recursion works
}
when I compiled using Release mode I saw the optimized assembly using the JMP instruction in spite of a call. So my conclusion was: tail recursion works. See image below:
I wanted to do some performance tests by increasing the input variable n in my Fibonacci function. I then opted to change the variable type, used in the function, from int to unsigned long long. Then I passed a big number like: 10e+08
This is now the new function:
typedef unsigned long long ULONG64;
ULONG64 fib_tail(ULONG64 n, ULONG64 res, ULONG64 next) {
if (n == 0) {
return res;
}
return fib_tail(n - 1, next, res + next);
}
int main()
{
fib_tail(10e+9,0,1); //Tail recursion does not work
}
When I ran the code above I got a stack overflow exception, which made me think that tail recursion was not working. I looked at the assembly and in fact I found this:
As you see now there is a call instruction whereas I was expecting only a simple JMP. I don't understand the reason why using a 8 bytes variable disables tail recursion. Why the compiler doesn't perform an optimization in such case?
Upvotes: 18
Views: 599
Reputation: 129314
This is one of those questions that you'd have to ask the guys that do compiler optimisation for MS - there is really no technical reason why ANY return type should prevent tail-recursion from being a jump as such - there may be OTHER reasons such as "the code is too complex to understand" or some such.
clang 3.7 as of a couple of weeks back clearly figures it out:
_Z8fib_tailyyy: # @_Z8fib_tailyyy
pushl %ebp
pushl %ebx
pushl %edi
pushl %esi
pushl %eax
movl 36(%esp), %ecx
movl 32(%esp), %esi
movl 28(%esp), %edi
movl 24(%esp), %ebx
movl %ebx, %eax
orl %edi, %eax
je .LBB0_1
movl 44(%esp), %ebp
movl 40(%esp), %eax
movl %eax, (%esp) # 4-byte Spill
.LBB0_3: # %if.end
movl %ebp, %edx
movl (%esp), %eax # 4-byte Reload
addl $-1, %ebx
adcl $-1, %edi
addl %eax, %esi
adcl %edx, %ecx
movl %ebx, %ebp
orl %edi, %ebp
movl %esi, (%esp) # 4-byte Spill
movl %ecx, %ebp
movl %eax, %esi
movl %edx, %ecx
jne .LBB0_3
jmp .LBB0_4
.LBB0_1:
movl %esi, %eax
movl %ecx, %edx
.LBB0_4: # %return
addl $4, %esp
popl %esi
popl %edi
popl %ebx
popl %ebp
retl
main: # @main
subl $28, %esp
movl $0, 20(%esp)
movl $1, 16(%esp)
movl $0, 12(%esp)
movl $0, 8(%esp)
movl $2, 4(%esp)
movl $1410065408, (%esp) # imm = 0x540BE400
calll _Z8fib_tailyyy
movl %edx, f+4
movl %eax, f
xorl %eax, %eax
addl $28, %esp
retl
Same applies to gcc 4.9.2 if you give it -O2 (but not in -O1 which was all clang needed)
(And of course also in 64-bit mode)
Upvotes: 9