Reputation: 6778
I have the following code to draw shapes (mainly used for rectangles) but the HTML5 drawing functions seem to draw borders with their thickness centered on the lines specified. I would like to have a border outside the surface of the shape and I'm at a loss.
Path.prototype.trace = function(elem, closePath) {
sd.context.beginPath();
sd.context.moveTo(this.getStretchedX(0, elem.width), this.getStretchedY(0, elem.height));
sd.context.lineCap = "square";
for(var i=1; i<this.points.length; ++i) {
sd.context.lineTo(this.getStretchedX(i, elem.width), this.getStretchedY(i, elem.height));
}
if(closePath) {
sd.context.lineTo(this.getStretchedX(0, elem.width), this.getStretchedY(0, elem.height));
}
}
getStrechedX and getStretchedY return the coordinates of the nth vertex once the shape is applied to a set element width, height and offset position.
Thanks to Ken Fyrstenberg's answer I've got it working for a rectangle, but this solution can sadly not apply to other shapes.
Here I drew two "wide" borders, one subtracting half the lineWidth to every position, another one adding. It doesn't work (as expected) because it's only going to put the thick lines above and to the left in one case, under and to the right in another - not "outside" the shape. You can also see a white area around the slope.
I tried working out how I could get the vertices to manually draw the path for the thick border (using fill()
instead of stroke()
).
But it turns out I still end up with the same problem: how to programatically determine if an edge is inside or outside. This would require some trigonometry and a heavy algorithm. For the purpose of my current work, this is too much trouble. I wanted to use this to draw a map of a building. The room walls need to be drawn outside the given dimensions, but I'll stick to standalone sloped walls for now.
Upvotes: 1
Views: 2939
Reputation: 105035
I'm late to the party, but here's an alternate way to "outside stroke" a complex path.
It uses a PathObject
to simplify the process of creating the outside stroke.
The PathObject
saves all the commands and arguments used to define your complex path.
This PathObject can also replay the commands--and can thereby redefine/redraw the saved path.
The PathObject class is re-usable. You can use it to save any path (simple or complex) that you need to redraw.
Html5 Canvas will soon have its own Path2D object built into the context, but my example below has a cross-browser polyfill that can be used until the Path2D object is implemented.
An illustration of a cloud with a silver lining applied using an outside stroke.
"Here's how it's done..."
Create a PathObject
that can save all the commands and arguments used to define your complex path. This PathObject
can also replay the commands--and can thereby redefine the saved path. Html5 Canvas will soon have its own Path2D
object built into the context, but my example below is a cross-browser polyfill that can be used until the Path2D
object is implemented.
Save a complex path using the PathObject.
Play the path commands on the main canvas and fill/stroke as desired.
Play the path commands on a temporary in-memory canvas.
On the temporary canvas:
Set a context.lineWidth
of twice your desired outside stroke width and do the stroke.
Set globalCompositeOperation='destination-out'
and fill. This will cause the inside of the complex path to be cleared and made transparent.
Draw the temporary canvas onto the main canvas. This causes your existing complex path on the main canvas to get the "outside stroke" from the in-memory canvas.
Here's example code and a Demo:
function log(){console.log.apply(console,arguments);}
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var canvas1=document.getElementById("canvas1");
var ctx1=canvas1.getContext("2d");
// A "class" that remembers (and can replay) all the
// commands & arguments used to define a context path
var PathObject=( function(){
// Path-related context methods that don't return a value
var methods = ['arc','beginPath','bezierCurveTo','clip','closePath',
'lineTo','moveTo','quadraticCurveTo','rect','restore','rotate',
'save','scale','setTransform','transform','translate','arcTo'];
var commands=[];
var args=[];
function PathObject(){
// add methods plus logging
for (var i=0;i<methods.length;i++){
var m = methods[i];
this[m] = (function(m){
return function () {
if(m=='beginPath'){
commands.length=0;
args.length=0;
}
commands.push(m);
args.push(arguments);
return(this);
};}(m));
}
};
// define/redefine the path by issuing all the saved
// path commands to the specified context
PathObject.prototype.definePath=function(context){
for(var i=0;i<commands.length;i++){
context[commands[i]].apply(context, args[i]);
}
}
//
PathObject.prototype.show=function(){
for(var i=0;i<commands.length;i++){
log(commands[i],args[i]);
}
}
//
return(PathObject);
})();
var x=75;
var y=100;
var scale=0.50;
// define a cloud path
var path=new PathObject()
.beginPath()
.save()
.translate(x,y)
.scale(scale,scale)
.moveTo(0, 0)
.bezierCurveTo(-40, 20, -40, 70, 60, 70)
.bezierCurveTo(80, 100, 150, 100, 170, 70)
.bezierCurveTo(250, 70, 250, 40, 220, 20)
.bezierCurveTo(260, -40, 200, -50, 170, -30)
.bezierCurveTo(150, -75, 80, -60, 80, -30)
.bezierCurveTo(30, -75, -20, -60, 0, 0)
.restore();
// fill the blue sky on the main canvas
ctx.fillStyle='skyblue';
ctx.fillRect(0,0,canvas.width,canvas.height);
// draw the cloud on the main canvas
path.definePath(ctx);
ctx.fillStyle='white';
ctx.fill();
ctx.strokeStyle='black';
ctx.lineWidth=2;
ctx.stroke();
// draw the cloud's silver lining on the temp canvas
path.definePath(ctx1);
ctx1.lineWidth=20;
ctx1.strokeStyle='silver';
ctx1.stroke();
ctx1.globalCompositeOperation='destination-out';
ctx1.fill();
// draw the silver lining onto the main canvas
ctx.drawImage(canvas1,0,0);
body{ background-color: ivory; }
canvas{border:1px solid red;}
<h4>Main canvas with original white cloud + small black stroke<br>The "outside silver lining" is from the temp canvas</h4>
<canvas id="canvas" width=300 height=300></canvas>
<h4>Temporary canvas used to create the "outside stroke"</h4>
<canvas id="canvas1" width=300 height=300></canvas>
Upvotes: 3
Reputation:
You can solve this by drawing two lines:
To contract, add 50% to x and y, subtract line-width (or 2x 50%) from width and height.
var ctx = document.querySelector("canvas").getContext("2d");
var lineWidth = 20;
var lw50 = lineWidth * 0.5;
// outer line
ctx.lineWidth = lineWidth; // intended line width
ctx.strokeStyle = "#975"; // color for main line
ctx.strokeRect(40, 40, 100, 100); // full line
// inner line
ctx.lineWidth = 2; // inner line width
ctx.strokeStyle = "#000"; // color for inner line
ctx.strokeRect(40 + lw50, 40 + lw50, 100 - lineWidth, 100 - lineWidth);
<canvas></canvas>
For more complex shapes you will have to calculate the path manually. This is a little bit more complex and perhaps too broad for SO. You have to consider things like tangents, angle at bends, intersections and so forth.
One way to "cheat" is to:
The offset
value below will determine the thickness of the inner line while the directions
will determine resolution.
var ctx = document.querySelector("canvas").getContext("2d");
var lineWidth = 20;
var offset = 0.5; // line "thickness"
var directions = 8; // increase to increase details
var angleStep = 2 * Math.PI / 8;
// shape
ctx.lineWidth = lineWidth; // intended line width
ctx.strokeStyle = "#000"; // color for inner line
ctx.moveTo(50, 100); // some random shape
ctx.lineTo(100, 20);
ctx.lineTo(200, 100);
ctx.lineTo(300, 100);
ctx.lineTo(200, 200);
ctx.lineTo(50, 100);
ctx.closePath();
ctx.stroke();
ctx.save()
ctx.clip(); // set as clipping mask
ctx.globalCompositeOperation = "destination-atop"; // draws "behind" existing drawings
for(var a = 0; a < Math.PI * 2; a += angleStep) {
ctx.setTransform(1,0,0,1, offset * Math.cos(a), offset * Math.sin(a));
ctx.drawImage(ctx.canvas, 0, 0);
}
ctx.restore(); // removes clipping, comp. mode, transforms
// set new color and redraw same path as previous
ctx.strokeStyle = "#975"; // color for inner line
ctx.stroke();
<canvas height=250></canvas>
Upvotes: 5