Reputation: 703
I am trying to make a python decorator that adds attributes to methods of a class so that I can access and modify those attributes from within the method itself. The decorator code is
from types import MethodType
class attribute(object):
def __init__(self, **attributes):
self.attributes = attributes
def __call__(self, function):
class override(object):
def __init__(self, function, attributes):
self.__function = function
for att in attributes:
setattr(self, att, attributes[att])
def __call__(self, *args, **kwargs):
return self.__function(*args, **kwargs)
def __get__(self, instance, owner):
return MethodType(self, instance, owner)
retval = override(function, self.attributes)
return retval
I tried this decorator on the toy example that follows.
class bar(object):
@attribute(a=2)
def foo(self):
print self.foo.a
self.foo.a = 1
Though I am able to access the value of attribute 'a' from within foo(), I can't set it to another value. Indeed, when I call bar().foo()
, I get the following AttributeError.
AttributeError: 'instancemethod' object has no attribute 'a'
Why is this? More importantly how can I achieve my goal?
Edit
Just to be more specific, I am trying to find a simple way to implement static variable that are located within class methods. Continuing from the example above, I would like instantiate b = bar()
, call both foo()
and doo()
methods and then access b.foo.a
and b.doo.a
later on.
class bar(object):
@attribute(a=2)
def foo(self):
self.foo.a = 1
@attribute(a=4)
def doo(self):
self.foo.a = 3
Upvotes: 1
Views: 5224
Reputation: 703
Based on other contributors's answers, I came up with the following workaround. First, wrap a dictionnary in a class resolving non-existant attributes to the wrapped dictionnary such as the following code.
class DictWrapper(object):
def __init__(self, d):
self.d = d
def __getattr__(self, key):
return self.d[key]
Credits to Lucas Jones for this code.
Then implement a addstatic
decorator with a statics
attribute that will store the static attributes.
class addstatic(object):
def __init__(self, **statics):
self.statics = statics
def __call__(self, function):
class override(object):
def __init__(self, function, statics):
self.__function = function
self.statics = DictWrapper(statics)
def __call__(self, *args, **kwargs):
return self.__function(*args, **kwargs)
def __get__(self, instance, objtype):
from types import MethodType
return MethodType(self, instance)
retval = override(function, self.statics)
return retval
The following code is an example of how the addstatic
decorator can be used on methods.
class bar(object):
@attribute(a=2, b=3)
def foo(self):
self.foo.statics.a = 1
self.foo.statics.b = 2
Then, playing with an instance of the bar
class yields :
>>> b = bar()
>>> b.foo.statics.a
2
>>> b.foo.statics.b
3
>>> b.foo()
>>> b.foo.statics.a
3
>>> b.foo.statics.b
5
The reason for using this statics dictionnary follows jsbueno's answer which suggest that what I want would require overloading the dot operator of and instance method wrapping the foo function, which I am not sure is possible. Of course, the method's attribute could be set in self.foo.__dict__
, but since it not recommended (as suggested by brainovergrow), I came up with this workaround. I am not certain this would be recommended either and I guess it is up for comments.
Upvotes: 0
Reputation: 10727
The best way to do this is to not do it at all.
First of all, there is no need for an attribute decorator; you can just assign it yourself:
class bar(object):
def foo(self):
print self.foo.a
self.foo.a = 1
foo.a = 2
However, this still encounters the same errors. You need to do:
self.foo.__dict__['a'] = 1
You can instead use a metaclass...but that gets messy quickly.
On the other hand, there are cleaner alternatives.
You can use defaults:
def foo(self, a):
print a[0]
a[0] = 2
foo.func_defaults = foo.func_defaults[:-1] + ([2],)
Of course, my preferred way is to avoid this altogether and use a callable class ("functor" in C++ words):
class bar(object):
def __init__(self):
self.foo = self.foo_method(self)
class foo_method(object):
def __init__(self, bar):
self.bar = bar
self.a = 2
def __call__(self):
print self.a
self.a = 1
Or just use classic class attributes:
class bar(object):
def __init__(self):
self.a = 1
def foo(self):
print self.a
self.a = 2
If it's that you want to hide a
from derived classes, use whatever private attributes are called in Python terminology:
class bar(object):
def __init__(self):
self.__a = 1 # this will be implicitly mangled as __bar__a or similar
def foo(self):
print self.__a
self.__a = 2
EDIT: You want static attributes?
class bar(object):
a = 1
def foo(self):
print self.a
self.a = 2
EDIT 2: If you want static attributes visible to only the current function, you can use PyExt's modify_function:
import pyext
def wrap_mod(*args, **kw):
def inner(f):
return pyext.modify_function(f, *args, **kw)
return inner
class bar(object):
@wrap_mod(globals={'a': [1]})
def foo(self):
print a[0]
a[0] = 2
It's slightly ugly and hackish. But it works.
My recommendation would be just to use double underscores:
class bar(object):
__a = 1
def foo(self):
print self.__a
self.__a = 2
Although this is visible to the other functions, it's invisible to anything else (actually, it's there, but it's mangled).
FINAL EDIT: Use this:
import pyext
def wrap_mod(*args, **kw):
def inner(f):
return pyext.modify_function(f, *args, **kw)
return inner
class bar(object):
@wrap_mod(globals={'a': [1]})
def foo(self):
print a[0]
a[0] = 2
foo.a = foo.func_globals['a']
b = bar()
b.foo() # prints 1
b.foo() # prints 2
# external access
b.foo.a[0] = 77
b.foo() # prints 77
Upvotes: 7
Reputation: 110456
If you are using Python2 - (and not Python3) - whenever you retrieve a method from an instance, a new instance method
object is created which is a wrapper to the original function defined in the class body.
The instance method is a rather transparent proxy to the function - you can retrieve the function's attributes through it, but not set them - that is why setting an item in self.foo.__dict__
works.
Alternatively you can reach the function object itself using: self.foo.im_func
- the im_func
attribute of instance methods point the underlying function.
Upvotes: 1
Reputation: 458
While You can accomplish Your goal by replacing self.foo.a = 1
with self.foo.__dict__['a'] = 1
it is generally not recommended.
Upvotes: 2