Reputation: 9566
I'm learning about mtl and I wish learn the proper way to create new monads as modules (not as typical application usage).
As a simple example I have written a ZipperT
monad (complete code here):
{-# LANGUAGE FlexibleInstances, FunctionalDependencies, MultiParamTypeClasses, GeneralizedNewtypeDeriving #-}
module ZipperT (
MonadZipper (..)
, ZipperT
, runZipperT
) where
import Control.Applicative
import Control.Monad.State
class Monad m => MonadZipper a m | m -> a where
pushL :: a -> m ()
pushR :: a -> m ()
...
data ZipperState s = ZipperState { left :: [s], right :: [s] }
newtype ZipperT s m a = ZipperT_ { runZipperT_ :: StateT (ZipperState s) m a }
deriving ( Functor, Applicative
, Monad, MonadIO, MonadTrans
, MonadState (ZipperState s))
instance (Monad m) => MonadZipper s (ZipperT s m) where
pushL x = modify $ \(ZipperState left right) -> ZipperState (x:left) right
pushR x = modify $ \(ZipperState left right) -> ZipperState left (x:right)
...
runZipperT :: (Monad m) => ZipperT s m a -> ([s], [s]) -> m (a, ([s], [s]))
runZipperT computation (left, right) = do
(x, ZipperState left' right') <- runStateT (runZipperT_ computation) (ZipperState left right)
return (x, (left', right'))
it's works and I can compose with other monads
import Control.Monad.Identity
import Control.Monad.State
import ZipperT
length' :: [a] -> Int
length' xs = runIdentity (execStateT (runZipperT contar ([], xs)) 0)
where contar = headR >>= \x -> case x of
Nothing -> return ()
Just _ -> do
right2left
(lift . modify) (+1)
-- ^^^^^^^
contar
But I wish to avoid the explicit lift
.
lift
? (I wish to hide the internal StateT
structure of my ZipperT
)Thank you!
Upvotes: 3
Views: 108
Reputation: 116139
I think that if you can write an instance of MonadState
for your transformer you can use modify
without the lift
:
instance Monad m => MonadState (ZipperT s m a) where
...
I must confess I am not sure about what part of the state modify
should affect, though.
I've looked at the complete code. It seems that you already define
MonadState (ZipperState s) (ZipperT s m)
This already provides a modify
which however modifies the wrong underlying state. What you actually wanted was to expose the state wrapped in m
, provided that is a MonadState
itself. This could theoretically be done with
instance MonadState s m => MonadState s (ZipperT s m) where
...
But now we have two MonadState
instances for the same monad, causing a conflict.
I think I somehow solved this.
Here's what I did:
First, I removed the original deriving MonadState
instance. I instead wrote
getZ :: Monad m => ZipperT s m (ZipperState s)
getZ = ZipperT_ get
putZ :: Monad m => ZipperState s -> ZipperT s m ()
putZ = ZipperT_ . put
modifyZ :: Monad m => (ZipperState s -> ZipperState s) -> ZipperT s m ()
modifyZ = ZipperT_ . modify
and replaced previous occurrences of get,put,modify
in the ZipperT
library with the above custom functions.
Then I added the new instance:
-- This requires UndecidableInstances
instance MonadState s m => MonadState s (ZipperT a m) where
get = lift get
put = lift . put
And now, the client code works without lifts:
length' :: [a] -> Int
length' xs = runIdentity (execStateT (runZipperT contar ([], xs)) 0)
where contar :: ZipperT a (StateT Int Identity) ()
contar = headR >>= \x -> case x of
Nothing -> return ()
Just _ -> do
right2left
modify (+ (1::Int))
-- ^^^^^^^
contar
Upvotes: 3