Reputation: 734
I am trying to concatenate 4 arrays, one 1D array of shape (78427,) and 3 2D array of shape (78427, 375/81/103). Basically this are 4 arrays with features for 78427 images, in which the 1D array only has 1 value for each image.
I tried concatenating the arrays as follows:
>>> print X_Cscores.shape
(78427, 375)
>>> print X_Mscores.shape
(78427, 81)
>>> print X_Tscores.shape
(78427, 103)
>>> print X_Yscores.shape
(78427,)
>>> np.concatenate((X_Cscores, X_Mscores, X_Tscores, X_Yscores), axis=1)
This results in the following error:
Traceback (most recent call last): File "", line 1, in ValueError: all the input arrays must have same number of dimensions
The problem seems to be the 1D array, but I can't really see why (it also has 78427 values). I tried to transpose the 1D array before concatenating it, but that also didn't work.
Any help on what's the right method to concatenate these arrays would be appreciated!
Upvotes: 40
Views: 50733
Reputation: 17942
Try concatenating X_Yscores[:, None]
(or X_Yscores[:, np.newaxis]
as imaluengo suggests). This creates a 2D array out of a 1D array.
Example:
A = np.array([1, 2, 3])
print A.shape
print A[:, None].shape
Output:
(3,)
(3,1)
Upvotes: 37
Reputation: 27615
You can try this one-liner:
concat = numpy.hstack([a.reshape(dim,-1) for a in [Cscores, Mscores, Tscores, Yscores]])
The "secret" here is to reshape using the known, common dimension in one axis, and -1 for the other, and it automatically matches the size (creating a new axis if needed).
Upvotes: 6
Reputation: 5691
I am not sure if you want something like:
a = np.array( [ [1,2],[3,4] ] )
b = np.array( [ 5,6 ] )
c = a.ravel()
con = np.concatenate( (c,b ) )
array([1, 2, 3, 4, 5, 6])
OR
np.column_stack( (a,b) )
array([[1, 2, 5],
[3, 4, 6]])
np.row_stack( (a,b) )
array([[1, 2],
[3, 4],
[5, 6]])
Upvotes: 17