Reputation: 351
I have a large vector containing a bunch of double elements. Given an array of percentile vector, such as percentile_vec = c(0.90, 0.91, 0.92, 0.93, 0.94, 0.95)
. I am currently using Rcpp sort
function to sort the large vector and then find the corresponding percentile value. Here is the main codes:
// [[Rcpp::export]]
NumericVector sort_rcpp(Rcpp::NumericVector& x)
{
std::vector<double> tmp = Rcpp::as<std::vector<double>> (x); // or NumericVector tmp = clone(x);
std::sort(tmp.begin(), tmp.end());
return wrap(tmp);
}
// [[Rcpp::export]]
NumericVector percentile_rcpp(Rcpp::NumericVector& x, Rcpp::NumericVector& percentile)
{
NumericVector tmp_sort = sort_rcpp(x);
int size_per = percentile.size();
NumericVector percentile_vec = no_init(size_per);
for (int ii = 0; ii < size_per; ii++)
{
double size_per = tmp_sort.size() * percentile[ii];
double size_per_round;
if (size_per < 1.0)
{
size_per_round = 1.0;
}
else
{
size_per_round = std::round(size_per);
}
percentile_vec[ii] = tmp_sort[size_per_round-1]; // For extreme case such as size_per_round == tmp_sort.size() to avoid overflow
}
return percentile_vec;
}
I also try to call R function quantile(x, c(.90, .91, .92, .93, .94, .95))
in Rcpp by using:
sub_percentile <- function (x)
{
return (quantile(x, c(.90, .91, .92, .93, .94, .95)));
}
source('C:/Users/~Call_R_function.R')
The test rests for x=runif(1E6)
are listed below:
microbenchmark(sub_percentile(x)->aa, percentile_rcpp(x, c(.90, .91, .92, .93, .94, .95))->bb)
#Unit: milliseconds
expr min lq mean median uq max neval
sub_percentile(x) 99.00029 99.24160 99.35339 99.32162 99.41869 100.57160 100
percentile_rcpp(~) 87.13393 87.30904 87.44847 87.40826 87.51547 88.41893 100
I expect a fast speed percentile calculation, yet I assume std::sort(tmp.begin(), tmp.end())
slows down the speed. Is there any better way to get a fast result using C++, RCpp/RcppAramdillo? Thanks.
Upvotes: 8
Views: 7497
Reputation: 91
Depending on how many percentiles you have to calculate and how large your vectors are, you can do much better (only O(N)) than sorting the whole vector (at best O(N*log(N))).
I had to calculate 1 percentile of vectors (>=160K) elements so what I did was the following:
void prctile_stl(double* in, const dim_t &len, const double &percent, std::vector<double> &range) {
// Calculates "percent" percentile.
// Linear interpolation inspired by prctile.m from MATLAB.
double r = (percent / 100.) * len;
double lower = 0;
double upper = 0;
double* min_ptr = NULL;
dim_t k = 0;
if(r >= len / 2.) { // Second half is smaller
dim_t idx_lo = max(r - 1, (double) 0.);
nth_element(in, in + idx_lo, in + len); // Complexity O(N)
lower = in[idx_lo];
if(idx_lo < len - 1) {
min_ptr = min_element(&(in[idx_lo + 1]), in + len);
upper = *min_ptr;
}
else
upper = lower;
}
else { // First half is smaller
double* max_ptr;
dim_t idx_up = ceil(max(r - 1, (double) 0.));
nth_element(in, in + idx_up, in + len); // Complexity O(N)
upper = in[idx_up];
if(idx_up > 0) {
max_ptr = max_element(in, in + idx_up);
lower = *max_ptr;
}
else
lower = upper;
}
// Linear interpolation
k = r + 0.5; // Implicit floor
r = r - k;
range[1] = (0.5 - r) * lower + (0.5 + r) * upper;
min_ptr = min_element(in, in + len);
range[0] = *min_ptr;
}
Another alternative is the IQAgent Algorithm from Numerical Recepies 3rd. Ed. It was initially intended for data-streams but you can cheat it by splitting up your large datavector into smaller chunks (e.g. 10K elements) and calculate percentiles for each of the blocks (where a sort on the 10K chunks is used). If you process the blocks one at a time, each successive block will modify the values of the percentiles a bit, till you get a pretty good approximation at the end. The algorithm gave good results (up to 3rd or 4th decimal) but was still slower then the n-th element implementation.
Upvotes: 2
Reputation: 591
Branching in a loop could be surely optimized. Use std::min/max calls with ints.
I would solve percent calculation of array indices this way:
uint PerCentIndex( double pc, uint size )
{
return 0.5 + ( double ) ( size - 1 ) * pc;
}
Only this line in the middle of the loop above:
percentile_vec[ii]
= tmp_sort[ PerCentIndex( percentile[ii], tmp_sort.size() ) ];
Upvotes: 1