Reputation: 1987
My dataframe looks like this and I want two separate cumulative columns, one for fund A and the other for fund B
Name Event SalesAmount Fund Cum-A(desired) Cum-B(desired)
John Webinar NA NA NA NA
John Sale 1000 A 1000 NA
John Sale 2000 B 1000 2000
John Sale 3000 A 4000 2000
John Email NA NA 4000 2000
Tom Webinar NA NA NA NA
Tom Sale 1000 A 1000 NA
Tom Sale 2000 B 1000 2000
Tom Sale 3000 A 4000 2000
Tom Email NA NA 4000 2000
I have tried:
df<-
df %>%
group_by(Name)%>%
mutate(Cum-A = as.numeric(ifelse(Fund=="A",cumsum(SalesAmount),0)))%>%
mutate(Cum-B = as.numeric(ifelse(Fund=="B",cumsum(SalesAmount),0)))
but it is totally not what I want as it shows me the runningtotal of both funds,albeit only on the row when the funds match. Kindly help.
Upvotes: 14
Views: 6075
Reputation: 66819
Here's an approach generalizing to more funds, using zoo
and data.table
:
# prep
require(data.table)
require(zoo)
setDT(d)
d[,Fund:=as.character(Fund)] # because factors are the worst
uf <- unique(d[Event=="Sale"]$Fund) # collect set of funds
First, assign cumulative sales on the relevant subset of observations:
for (f in uf) d[(Event=="Sale"&Fund==f),paste0('c',f):=cumsum(SalesAmount),by=Name]
Then, carry the last observation forward:
d[,paste0('c',uf):=lapply(.SD,na.locf,na.rm=FALSE),.SDcols=paste0('c',uf),by=Name]
Upvotes: 3
Reputation: 601
You can shorten @Marat's answer slightly by rolling it all into a single mutate
:
df %>%
group_by(Name) %>%
mutate(
cA = cumsum(ifelse(!is.na(Fund) & Fund == "A", SalesAmount, 0)),
cB = cumsum(ifelse(!is.na(Fund) & Fund == "B", SalesAmount, 0)),
cA = ifelse(cA == 0, NA, cA),
cB = ifelse(cB == 0, NA, cB)
)
Upvotes: 1
Reputation: 13304
How about:
library(dplyr)
d %>%
group_by(Name) %>%
mutate(cA=cumsum(ifelse(!is.na(Fund) & Fund=="A",SalesAmount,0))) %>%
mutate(cB=cumsum(ifelse(!is.na(Fund) & Fund=="B",SalesAmount,0)))
The output:
Source: local data frame [10 x 8]
Groups: Name
Name Event SalesAmount Fund Cum.A.desired. Cum.B.desired. cA cB
1 John Webinar NA NA NA NA 0 0
2 John Sale 1000 A 1000 NA 1000 0
3 John Sale 2000 B 1000 2000 1000 2000
4 John Sale 3000 A 4000 2000 4000 2000
5 John Email NA NA 4000 2000 4000 2000
6 Tom Webinar NA NA NA NA 0 0
7 Tom Sale 1000 A 1000 NA 1000 0
8 Tom Sale 2000 B 1000 2000 1000 2000
9 Tom Sale 3000 A 4000 2000 4000 2000
10 Tom Email NA NA 4000 2000 4000 2000
Zeroes in the resulting columns can be replaced by NA
afterwards if needed:
result$cA[result$cA==0] <- NA
result$cB[result$cB==0] <- NA
Your input data set:
d <- structure(list(Name = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L), .Label = c("John", "Tom"), class = "factor"), Event = structure(c(3L, 2L, 2L, 2L, 1L, 3L, 2L, 2L, 2L, 1L), .Label = c("Email", "Sale", "Webinar"), class = "factor"), SalesAmount = c(NA, 1000L, 2000L, 3000L, NA, NA, 1000L, 2000L, 3000L, NA), Fund = structure(c(NA, 1L, 2L, 1L, NA, NA, 1L, 2L, 1L, NA), .Label = c("A", "B"), class = "factor"), Cum.A.desired. = c(NA, 1000L, 1000L, 4000L, 4000L, NA, 1000L, 1000L, 4000L, 4000L), Cum.B.desired. = c(NA, NA, 2000L, 2000L, 2000L, NA, NA, 2000L, 2000L, 2000L)), .Names = c("Name", "Event", "SalesAmount", "Fund", "Cum.A.desired.", "Cum.B.desired." ), class = "data.frame", row.names = c(NA, -10L))
Upvotes: 9