Reputation: 2443
I have the following data frame:
set.seed(42)
df <- data_frame(x = sample(0:100, 50, replace = T),
y = sample(c(T, F), 50, replace = T))
I would like to create a third column z
that will be the sum of column x
, but only if there are more than 3 true
s in a row in column y
.
Is there a vectorized way to do it with dplyr
? I don't even know how to approach this.
Upvotes: 1
Views: 2513
Reputation: 269566
The question did not specify what values to use if there are not 3 TRUE values so we will use 0.
library(dplyr)
library(zoo)
sum3 <- function(z) all(z[, "y"]) * sum(z[, "x"])
df %>% mutate(sum = rollapplyr(df, 3, sum3, by.column = FALSE, fill = 0))
giving:
# A tibble: 50 x 3
x y sum
<int> <lgl> <int>
1 92 TRUE 0
2 94 TRUE 0
3 28 TRUE 214
4 83 FALSE 0
5 64 TRUE 0
6 52 FALSE 0
7 74 FALSE 0
8 13 TRUE 0
9 66 TRUE 0
10 71 FALSE 0
# ... with 40 more rows
Upvotes: 1
Reputation: 887108
We create a grouping variable with rleid
from data.table
and get the sum
of 'x' if there are more than 3 elements (n() >3
) and if
all
the elements in 'y' are TRUE or else
return NA
library(dplyr)
library(data.table)
df %>%
group_by(grp = rleid(y)) %>%
mutate(Sum = if(n() > 3 & all(y)) sum(x) else NA_integer_) %>%
ungroup %>%
select(-grp)
It can be also done with data.table
library(data.table)
setDT(df)[, Sum := sum(x) * NA^(!((.N > 3) & all(y))), .(grp = rleid(y))]
Upvotes: 1