Reputation: 1152
I want to detect the colors of a Rubiks Cube. That is what I want: Link
I'm able to recognize the 9 colored fields with the findContours
function of Open CV.
Here is my code:
Mat input = new Mat(); //The image
Mat blur = new Mat();
Mat canny = new Mat();
Imgproc.GaussianBlur(input, blur, new Size(3,3), 1.5); //GaussianBlur to reduce noise
Imgproc.Canny(blur, canny, 60, 70); //Canny to detect the edges
Imgproc.GaussianBlur(canny, canny, new Size(3,3), 1.5); //Again GaussianBlur to reduce noise
List<MatOfPoint> contours = new ArrayList<>();
Mat hierachy = new Mat();
Imgproc.findContours(canny, contours, hierachy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); //Find contours
List<MatOfPoint2f> approxedShapes = new ArrayList<>();
for(MatOfPoint point : contours){
double area = Imgproc.contourArea(point);
if(area > 1000){
MatOfPoint2f shape = new MatOfPoint2f(point.toArray());
MatOfPoint2f approxedShape = new MatOfPoint2f();
double epsilon = Imgproc.arcLength(shape, true) / 10;
Imgproc.approxPolyDP(shape, approxedShape, epsilon, true); //"Smooth" the edges with approxPolyDP
approxedShapes.add(approxedShape);
}
}
//Visualisation
for(MatOfPoint2f point : approxedShapes){
RotatedRect rect = Imgproc.minAreaRect(new MatOfPoint2f(point.toArray()));
Imgproc.circle(input, rect.center, 5, new Scalar(0, 0, 255));
for(Point p : point.toArray()){
Imgproc.circle(input, p, 5, new Scalar(0,255,0));
}
}
This is the "raw" source image:
It produces this output (Green circles: corners; Blue circles: center of the rectangle):
As you can see, there are more detected rectangles than 9. I want to get the nine midpoints in an array of Points.
How can I choose the right ones?
Hopefully, you can understand what I mean
Upvotes: 3
Views: 694
Reputation: 3642
I have written code to do this in OpenCV.
The basic process is as yours, find contours but then weed out small and non-convex contours.
After this you can iterate over your contours, for each one do the following:
Some sample code is below although note that it's not complete, it should give you a ought idea.
void meanColourOfContour( const Mat& frame, vector<Point> contour, Vec3b& colour, vector<Point>& pointsInContour ) {
sort(contour.begin(), contour.end(), pointSorter);
//
// Mean RGB values
//
int rsum = 0;
int gsum = 0;
int bsum = 0;
int index = 0;
Point lastP = contour[index++];
pointsInContour.push_back(lastP);
Vec3b rgbValue = frame.at<Vec3b>(lastP);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
int currentRow = lastP.y;
int lastX = lastP.x;
// For all remaining points in contour
while( index < contour.size() ) {
Point nextP = contour[index];
// Save it
pointsInContour.push_back(nextP);
// If we're on the same row, add in values of intervening points
if( nextP.y == currentRow ) {
for( int x = lastX; x < nextP.x; x++ ) {
Point p(x, currentRow);
pointsInContour.push_back(p);
rgbValue = frame.at<Vec3b>(p);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
}
}
// Add nextP
rgbValue = frame.at<Vec3b>(nextP);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
lastX = nextP.x;
currentRow = nextP.y;
index++;
}
// Calculate mean
size_t pointCount = pointsInContour.size();
colour =Vec3b( rsum/pointCount, gsum/pointCount, bsum/pointCount);
}
void extractFacelets( const Mat& frame, vector<tFacelet>& facelets) {
// Convert to Grey
Mat greyFrame;
cvtColor(frame, greyFrame, CV_BGR2GRAY);
blur( greyFrame, greyFrame, Size(3,3));
// Canny and find contours
Mat cannyOut;
Canny(greyFrame, cannyOut, 100, 200);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(cannyOut, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE);
// Filter out non convex contours
for( int i=contours.size()-1; i>=0; i-- ) {
if( contourArea(contours[i]) < 400 ) {
contours.erase(contours.begin()+i);
}
}
// For each contour, calculate mean RGB and plot in output
int cindex = 0;
for( auto iter = contours.begin(); iter != contours.end(); iter ++ ) {
// Sort points in contour on ascending Y then X coord
vector<Point> contour = (vector<Point>)*iter;
vector<Vec3b> meanColours;
Vec3b meanColour;
vector<Point> pointsInContour;
meanColourOfContour(frame, contour, meanColour, pointsInContour);
meanColours.push_back(meanColour);
long x=0; long y=0;
for( auto iter=pointsInContour.begin(); iter != pointsInContour.end(); iter++ ) {
Point p = (Point) *iter;
x += p.x;
y += p.y;
}
tFacelet f;
f.centroid.x = (int) (x / pointsInContour.size());
f.centroid.y = (int) (y / pointsInContour.size());
f.colour = meanColour;
f.visible = true;
facelets.push_back(f);
}
}
Upvotes: 2