Reputation: 4477
I have a tsv that looks like this (long-form):
one two value
a b 30
a c 40
a d 20
b c 10
b d 05
c d 30
I'm trying to get this into a dataframe for R (or pandas)
a b c d
a 00 30 40 20
b 30 00 10 05
c 40 10 00 30
d 20 05 30 00
The problem is, in my tsv I only have a, b defined and not b,a. So I get a lot of NAs in my dataframe.
The final goal is to get a distance matrix to use in clustering. Any help would be appreciated.
Upvotes: 10
Views: 3222
Reputation: 101335
With base R, you can try xtabs
like below
xtabs(
value ~ .,
rbind(
df,
setNames(df, names(df)[c(2, 1, 3)])
)
)
which gives
two
one a b c d
a 0 30 40 20
b 30 0 10 5
c 40 10 0 30
d 20 5 30 0
Upvotes: 0
Reputation: 2253
The trusty for
loop can sometimes be the most intuitive:
# Simulate data.
df <- data.frame(one = c("a", "a", "a", "b", "b", "c"),
two = c("b", "c", "d", "c", "d", "d"),
value = c(30, 40, 20, 10, 5, 30))
# Initialize matrix.
cols <- unique(c(df_long$one, df_long$two))
mat <- matrix(nrow = length(cols), ncol = length(cols),
dimnames = list(cols, cols))
# Populate matrix.
for(i in seq(nrow(df))) {
mat[df$one[i], df$two[i]] <- df$value[i]
mat[df$two[i], df$one[i]] <- df$value[i]
}
diag(mat) <- 0
Upvotes: 0
Reputation: 33938
Yet another approach is reshape::cast
df.long = data.frame(one=c('a','a','a','b','b','c'),
two=c('b','c','d','c','d','d'),
value=c(30,40,20,10,05,30) )
# cast will recover the upper/lower-triangles...
df <- as.matrix( cast(df.long, one ~ two, fill=0) )
# b c d
# a 30 40 20
# b 0 10 5
# c 0 0 30
So we construct matrix with full indices, and insert:
df <- matrix(nrow=length(indices), ncol=length(indices),dimnames = list(indices,indices))
diag(df) <- 0
# once we assure that the full upper-triangle is present and in sorted order (as Robert's answer does), then we
df[upper.tri(df)] <- as.matrix( cast(df.long, one ~ two, fill=0) )
df[lower.tri(df)] <- df[upper.tri(df)]
UPDATE: the original sketch included these manual kludges
Then the same approaches to add the missing row 'd' and column 'a', and fill the lower triangle by adding the transpose t(df) :
df <- cbind(a=rep(0,4), rbind(df, d=rep(0,3)))
# a b c d
# a 0 30 40 20
# b 0 0 10 5
# c 0 0 0 30
# d 0 0 0 0
df + t(df)
# a b c d
# a 0 30 40 20
# b 30 0 10 5
# c 40 10 0 30
# d 20 5 30 0
Upvotes: 2
Reputation: 25854
An igraph
solution where you read in the dataframe, with the value assumed as edge weights. You can then convert this to an adjacency matrix
dat <- read.table(header=T, text=" one two value
a b 30
a c 40
a d 20
b c 10
b d 05
c d 30")
library(igraph)
# Make undirected so that graph matrix will be symmetric
g <- graph.data.frame(dat, directed=FALSE)
# add value as a weight attribute
get.adjacency(g, attr="value", sparse=FALSE)
# a b c d
#a 0 30 40 20
#b 30 0 10 5
#c 40 10 0 30
#d 20 5 30 0
Upvotes: 9
Reputation: 887108
You may try
un1 <- unique(unlist(df1[1:2]))
df1[1:2] <- lapply(df1[1:2], factor, levels=un1)
m1 <- xtabs(value~one+two, df1)
m1+t(m1)
# two
#one a b c d
#a 0 30 40 20
#b 30 0 10 5
#c 40 10 0 30
#d 20 5 30 0
Or you use the row/col
index
m1 <- matrix(0, nrow=length(un1), ncol=length(un1),
dimnames=list(un1, un1))
m1[cbind(match(df1$one, rownames(m1)),
match(df1$two, colnames(m1)))] <- df1$value
m1+t(m1)
# a b c d
#a 0 30 40 20
#b 30 0 10 5
#c 40 10 0 30
#d 20 5 30 0
Upvotes: 2
Reputation: 5152
Make sure your data is sorted tsv=tsv[with(tsv,order(one,two)),]
, and try this:
n=4
B <- matrix(rep(0,n*n), n)
dimnames(B) <- list(letters[1:n],letters[1:n])
B[lower.tri(B)] <- tsv$value
B[upper.tri(B)]=tsv$value
B
Upvotes: 1