Reputation: 427
I have two arrays,
a = array([
[ 0.93825418, 0.60731973, 0.44218921, 0.90888805, 0.97695114],
[ 0.27422807, 0.75870153, 0.12154102, 0.89137678, 0.04257262],
[ 0.32855867, 0.17215507, 0.00302302, 0.95395069, 0.02596567],
[ 0.18385244, 0.09108341, 0.27925367, 0.0177183 , 0.41035188],
[ 0.87229432, 0.73573982, 0.98554476, 0.72321398, 0.98316711],
[ 0.16474265, 0.5308054 , 0.27913615, 0.59107689, 0.6480463 ],
[ 0.88356436, 0.22343885, 0.74900285, 0.43895017, 0.74993129],
[ 0.08097611, 0.48984607, 0.33991052, 0.06431022, 0.10753135],
[ 0.67351561, 0.13165046, 0.41327765, 0.21768539, 0.7337069 ],
[ 0.65609999, 0.06241059, 0.3400624 , 0.13234171, 0.23679716]
])
b = array([
[False, True, True, False, False],
[ True, False, False, False, False],
[ True, True, False, False, False],
[False, False, True, False, True],
[False, False, False, True, False],
[False, True, True, True, True],
[False, True, False, True, True],
[False, True, True, False, False],
[ True, True, True, True, True],
[ True, False, True, False, True]
], dtype = bool)
Now I want using b
to mask a
, retain the True
value in a
, and replace the False
value with NaN
, getting a new array that has a shape like a
.
How to do that?
Upvotes: 9
Views: 8378
Reputation: 176850
You can use boolean indexing:
a[~b] = np.nan
This replaces all of values in a
that correspond to False
values in the mask b
with np.nan
:
>>> a
array([[ nan, 0.60731973, 0.44218921, nan, nan],
[ 0.27422807, nan, nan, nan, nan],
[ 0.32855867, 0.17215507, nan, nan, nan],
[ nan, nan, 0.27925367, nan, 0.41035188],
[ nan, nan, nan, 0.72321398, nan],
[ nan, 0.5308054 , 0.27913615, 0.59107689, 0.6480463 ],
[ nan, 0.22343885, nan, 0.43895017, 0.74993129],
[ nan, 0.48984607, 0.33991052, nan, nan],
[ 0.67351561, 0.13165046, 0.41327765, 0.21768539, 0.7337069 ],
[ 0.65609999, nan, 0.3400624 , nan, 0.23679716]])
Upvotes: 12