Reputation: 21971
var[np.isnan(var)] = 0.0
var.shape
(50, 360, 720)
I want to replace NaNs in the array with 0.0. However, I get an error: *** IndexError: Index cannot be multidimensional
var[0]
masked_array(data =
[[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]
...,
[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]],
mask =
[[ True True True ..., True True True]
[ True True True ..., True True True]
[ True True True ..., True True True]
...,
[ True True True ..., True True True]
[ True True True ..., True True True]
[ True True True ..., True True True]],
fill_value = nan)
How to fix it?
Upvotes: 0
Views: 1055
Reputation: 273526
nan_to_num is the right way to do it. Here's a 2D example:
In [25]: arr = np.array([[10, 20], [np.nan, 30], [np.nan, -10]])
In [26]: arr
Out[26]:
array([[ 10., 20.],
[ nan, 30.],
[ nan, -10.]])
In [27]: np.nan_to_num(arr)
Out[27]:
array([[ 10., 20.],
[ 0., 30.],
[ 0., -10.]])
I believe nan_to_num
should work on masked arrays as well. For example:
In [33]: mx = ma.masked_array([np.nan, 2, 3, 4], mask=[0, 0, 1, 0])
In [34]: mx.compressed()
Out[34]: array([ nan, 2., 4.])
And now:
In [36]: np.nan_to_num(ma.masked_array([np.nan, 2, 3, 4], mask=[0, 0, 1, 0])).compressed()
Out[36]: array([ 0., 2., 4.])
Upvotes: 1