Reputation: 13
When I'm trying to solve the equation(since I don't have enough reputation so I can only post the latex code for the equation here)
\begin{equation}
\Comb{5}{1} P_s(1-P_s)^4+\Comb{5}{5} P_s^5\geq0.9
\end{equation}
(the equation looks more or less like:5*P*(1-P)^4+P^5=0.9)
by MATLAB,
I used the code:
clc;close all; clear all;
syms x
eqn=5*x*((1-x)^4)+x^5==0.9;
% solx=solve(eqn,x)
solve(eqn,x)
then MATLAB returned this:
ans =
RootOf(z^5 - (10*z^4)/3 + 5*z^3 - (10*z^2)/3 + (5*z)/6 - 3/20, z)[1]
RootOf(z^5 - (10*z^4)/3 + 5*z^3 - (10*z^2)/3 + (5*z)/6 - 3/20, z)[2]
RootOf(z^5 - (10*z^4)/3 + 5*z^3 - (10*z^2)/3 + (5*z)/6 - 3/20, z)[3]
RootOf(z^5 - (10*z^4)/3 + 5*z^3 - (10*z^2)/3 + (5*z)/6 - 3/20, z)[4]
RootOf(z^5 - (10*z^4)/3 + 5*z^3 - (10*z^2)/3 + (5*z)/6 - 3/20, z)[5]
then I continue to try to get numeric value by this code:
clc;close all; clear all;
syms z
eqn=z^5 - (10*z^4)/3 + 5*z^3 - (10*z^2)/3 + (5*z)/6 - 3/20==0;
solve(eqn,z)
but MATLAB still returned this:
ans =
RootOf(z1^5 - (10*z1^4)/3 + 5*z1^3 - (10*z1^2)/3 + (5*z1)/6 - 3/20, z1)[1]
RootOf(z1^5 - (10*z1^4)/3 + 5*z1^3 - (10*z1^2)/3 + (5*z1)/6 - 3/20, z1)[2]
RootOf(z1^5 - (10*z1^4)/3 + 5*z1^3 - (10*z1^2)/3 + (5*z1)/6 - 3/20, z1)[3]
RootOf(z1^5 - (10*z1^4)/3 + 5*z1^3 - (10*z1^2)/3 + (5*z1)/6 - 3/20, z1)[4]
RootOf(z1^5 - (10*z1^4)/3 + 5*z1^3 - (10*z1^2)/3 + (5*z1)/6 - 3/20, z1)[5]
Can someone please provide me some idea how to solve this problem or some link I should refer to? I referred to the link(http://www.mathworks.com/help/symbolic/solve.html#zmw57dd0e111578) on Mathwork but didn't help getting numerical values.
Please support Many thanks in advance.
Upvotes: 1
Views: 836
Reputation: 1894
You have to use vpa
for those RootOf
to get the numerical approximation:
clc;close all; clear all;
syms x
eqn=5*x*((1-x)^4)+x^5==0.9;
% solx=solve(eqn,x)
sol = solve(eqn,x);
my_sol = vpa(sol)
Result:
>> mysol = vpa(sol)
mysol =
0.9791481609736960010570740114736
0.13006272993340436563484822895086 + 0.23845812045897270134074538059624i
1.047029856246414300503281431979 + 0.99001796114505954590535961748791i
1.047029856246414300503281431979 - 0.99001796114505954590535961748791i
0.13006272993340436563484822895086 - 0.23845812045897270134074538059624i
Upvotes: 5