Reputation: 1446
I have a DataFrame
>>> df = pd.DataFrame({'a':[1,1,1,2,2,2],
... 'b':[10,20,20,10,20,20],
... 'result':[100,200,300,400,500,600]})
...
>>> df
a b result
0 1 10 100
1 1 20 200
2 1 20 300
3 2 10 400
4 2 20 500
5 2 20 600
and want to create a new column that is the average result for the corresponding values for 'a' and 'b'. I can get those values with a groupby:
>>> df.groupby(['a','b'])['result'].mean()
a b
1 10 100
20 250
2 10 400
20 550
Name: result, dtype: int64
but can not figure out how to turn that into a new column in the original DataFrame. The final result should look like this,
>>> df
a b result avg_result
0 1 10 100 100
1 1 20 200 250
2 1 20 300 250
3 2 10 400 400
4 2 20 500 550
5 2 20 600 550
I could do this by looping through the combinations of 'a' and 'b' but that would get really slow and unwieldy for larger sets of data. There is probably a much simpler and faster way to go.
Upvotes: 18
Views: 10108
Reputation: 1
you need to reset the index, like:
df.reset_index()
the output should be like you want
Upvotes: 0
Reputation: 171
Since the previous answer(https://stackoverflow.com/a/33445035/6504287) is pandas based, I'm adding the pyspark based solution as in below:
So it is better to go with the Window
function as in the below code snippet example:
windowSpecAgg = Window.partitionBy('a', 'b')
ext_data_df.withColumn('avg_result', avg('result').over(windowSpecAgg)).show()
The above code is with respect to the example took in the previously provided solution(https://stackoverflow.com/a/33445035/6504287).
Upvotes: 0
Reputation: 176850
You need transform
:
df['avg_result'] = df.groupby(['a', 'b'])['result'].transform('mean')
This generates a correctly indexed column of the groupby values for you:
a b result avg_result
0 1 10 100 100
1 1 20 200 250
2 1 20 300 250
3 2 10 400 400
4 2 20 500 550
5 2 20 600 550
Upvotes: 33