Reputation: 8758
Given the following, how can I set the NaN/None value of the B row based on the other rows? Should I use apply?
d = [
{'A': 2, 'B': Decimal('628.00'), 'C': 1, 'D': 'blue'},
{'A': 1, 'B': None, 'C': 3, 'D': 'orange'},
{'A': 3, 'B': None, 'C': 1, 'D': 'orange'},
{'A': 2, 'B': Decimal('575.00'), 'C': 2, 'D': 'blue'},
{'A': 4, 'B': None, 'C': 1, 'D': 'blue'},
]
df = pd.DataFrame(d)
# Make sure types are correct
df['B'] = df['B'].astype('float')
df['C'] = df['C'].astype('int')
In : df
Out:
A B C D
0 2 628 1 blue
1 1 NaN 3 orange
2 3 NaN 1 orange
3 2 575 2 blue
4 4 NaN 1 blue
In : df.dtypes
Out:
A int64
B float64
C int64
D object
dtype: object
Here is an example of the "rules" to set B when the value is None:
def make_B(c, d):
"""When B is None, the value of B depends on C and D."""
if d == 'blue':
return Decimal('1400.89') * 1 * c
elif d == 'orange':
return Decimal('2300.57') * 2 * c
raise
Upvotes: 1
Views: 801
Reputation: 814
Here is the way I solve it:
I define make_B as below:
def make_B(x):
if np.isnan(x['B']):
"""When B is None, the value of B depends on C and D."""
if x['D'] == 'blue':
return Decimal('1400.89') * 1 * x['C']
elif x['D'] == 'orange':
return Decimal('2300.57') * 2 * x['C']
else:
return x['B']
Then I use apply:
df.apply(make_B,axis=1)
Upvotes: 1