Reputation: 29
I'm trying to prove this program in dafny but I still get an error with the last invariant and I can't see why it's not working.
The program consists on a method which inserts an int into a sorted array. The int will be inserted in the correct position ie: inserting 5 into 1,2,3,4,5,6,7 will return: 1,2,3,4,5,5,6,7
function sorted (a: array<int>): bool
requires a != null ;
reads a;
{
forall i :: 0 <= i < (a.Length - 1) ==> a[i] <= a[ i+1]
}
method InsertSorted(a: array<int>, key: int ) returns (b: array<int>)
requires a != null && sorted(a);
ensures b != null ;
ensures sorted(b);
{
var i:= 0;
b:= new int[a.Length + 1];
if(a.Length > 0){
while (i < a.Length)
invariant 0<= i;
invariant i <= a.Length;
invariant b.Length == a.Length + 1;
invariant sorted(a);
invariant forall j :: 0 <= j < i ==> b[j] <= b[j+1];
{
if(a[i]<=key)
{
b[i]:= a[i];
b [i+1] := key;
assert b[i] <= b[i+1];
}
else if (key > a[i])
{
if(i==0)
{
b[i] := key;
}
b [i+1] := a[i];
assert key > a[i];
assert b[i]<= b[i+1];
}
else{
b[i]:= a[i];
b [i+1] := a[i];
assert sorted(a);
assert b[i] <= b[i+1];
}
assert b[i]<= b[i+1];
i := i+1;
}
}
else{
b[0] := key;
}
}
Thanks
Upvotes: 1
Views: 1492
Reputation: 7328
I think that perhaps you algorithm is not correct. In any case, I find the conditionals hard to understand, if the first branch is not taken then we know that !(a[i] <= key)
or more simply a[i] > key
which implies that the second branch guarded by key > a[i]
is unreachable.
!(a[i]<=key) && a[i] < key ==> false
In any case, I suspect the loop invariant isn't strong enough to prove even a correct version since you are not keeping track of the state of b
in sufficient detail.
Below is a proof of an algorithm that is similar to yours, showing a stronger loop invariant. I keep track of where in the array key
is inserted using a ghost variable (a variable that is just used for verification and will not appear in the compiler output).
http://rise4fun.com/Dafny/RqGi
predicate sorted (a: seq<int>)
{
forall i,j :: 0 <= i < j < |a| ==> a[i] <= a[j]
}
predicate lessThan(a:seq<int>, key:int) {
forall i :: 0 <= i < |a| ==> a[i] < key
}
predicate greaterEqualThan(a:seq<int>, key:int) {
forall i :: 0 <= i < |a| ==> a[i] >= key
}
method InsertSorted(a: array<int>, key: int ) returns (b: array<int>)
requires a != null && sorted(a[..])
ensures b != null && sorted(b[..]);
{
b:= new int[a.Length + 1];
ghost var k := 0;
b[0] := key;
ghost var a' := a[..];
var i:= 0;
while (i < a.Length)
modifies b;
invariant 0 <= k <= i <= a.Length
invariant b.Length == a.Length + 1
invariant a[..] == a'
invariant lessThan(a[..i], key) ==> i == k;
invariant lessThan(a[..k], key)
invariant b[..k] == a[..k]
invariant b[k] == key
invariant k < i ==> b[k+1..i+1] == a[k..i]
invariant k < i ==> greaterEqualThan(b[k+1..i+1], key)
invariant 0 <= k < b.Length && b[k] == key
{
if(a[i]<key)
{
b[i]:= a[i];
b[i+1] := key;
k := i+1;
}
else if (a[i] >= key)
{
b[i+1] := a[i];
}
i := i+1;
}
assert b[..] == a[..k] + [key] + a[k..];
}
Upvotes: 1