Reputation: 31
Since no out-of-box support for reading excel files in spark, so i first read the excel file first into a pandas dataframe, then try to convert the pandas dataframe into a spark dataframe but i got below errors (i am using spark 1.5.1)
import pandas as pd
from pandas import ExcelFile
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import *
pdf=pd.read_excel('/home/testdata/test.xlsx')
df = sqlContext.createDataFrame(pdf)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/spark/spark-hadoop/python/pyspark/sql/context.py", line 406, in createDataFrame
rdd, schema = self._createFromLocal(data, schema)
File "/opt/spark/spark-hadoop/python/pyspark/sql/context.py", line 337, in _createFromLocal
data = [schema.toInternal(row) for row in data]
File "/opt/spark/spark-hadoop/python/pyspark/sql/types.py", line 541, in toInternal
return tuple(f.toInternal(v) for f, v in zip(self.fields, obj))
File "/opt/spark/spark-hadoop/python/pyspark/sql/types.py", line 541, in <genexpr>
return tuple(f.toInternal(v) for f, v in zip(self.fields, obj))
File "/opt/spark/spark-hadoop/python/pyspark/sql/types.py", line 435, in toInternal
return self.dataType.toInternal(obj)
File "/opt/spark/spark-hadoop/python/pyspark/sql/types.py", line 191, in toInternal
else time.mktime(dt.timetuple()))
AttributeError: 'datetime.time' object has no attribute 'timetuple'
Does anybody know how to fix it?
Upvotes: 3
Views: 3706
Reputation: 69
Explicitly defining the schema would fix the problem. Depending on your use case, you can dynamically specify the schema as shown in the snippet below;
from pyspark.sql.types import *
schema = StructType([
StructField(name,
TimestampType() if pd.api.types.is_datetime64_dtype(col) else
DateType() if pd.api.types.is_datetime64_any_dtype(col) else
DoubleType() if pd.api.types.is_float_dtype(col) else StringType(), True)
for name, col in zip(df.columns, df.dtypes)])
sparkDf = spark.createDataFrame(df, schema)
Upvotes: 0
Reputation: 25189
My best guess your problem was about "incorrectly" parsing datetime
data when you read your data with Pandas
The following code "just works":
import pandas as pd
from pandas import ExcelFile
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import *
pdf = pd.read_excel('test.xlsx', parse_dates=['Created on','Confirmation time'])
sc = SparkContext()
sqlContext = SQLContext(sc)
sqlContext.createDataFrame(data=pdf).collect()
[Row(Customer=1000935702, Country='TW', ...
Please note, you have one more datetime column 'Confirmation date'
which in your example consists of NaT
and thus reads without a problem to RDD with your short sample, but should you happen to have some data there in a full dataset you'll have to take care about that column as well.
Upvotes: 1