Reputation: 4811
I am trying to generate n random numbers whose sum is less than 1.
So I can't just run runif(3)
. But I can condition each iteration on the sum of all values generated up to that point.
The idea is to start an empty vector, v
, and set up a loop such that for each iteration, i
, a runif()
is generated, but before it is accepted as an element of v
, i.e. v[i] <- runif()
, the test sum(v) < 1
is carried out, and while FALSE
the last entry v[i]
is finally accepted, BUT if TRUE
, that is the sum is greater than 1, v[i]
is tossed out of the vector, and the iteration i
is repeated.
I am far from implementing this idea, but I would like to resolve it along the lines of something similar to what follows. It's not so much a practical problem, but more of an exercise to understand the syntax of loops in general:
n <- 4
v <- 0
for (i in 1:n){
rdom <- runif(1)
if((sum(v) + rdom) < 1) v[i] <- rdom
}
# keep trying before moving on to iteration i + 1???? i <- stays i?????
}
I have looked into while
(actually I incorporated the while
function in the title); however, I need the vector to have n
elements, so I get stuck if I try something that basically tells R to add random uniform realizations as elements of the vector v
while
sum(v) < 1
, because I can end up with less than n
elements in v
.
Upvotes: 1
Views: 1430
Reputation: 23818
Here's how I would do it, without any loop, if
or while
:
set.seed(123)
x <- runif(1) # start with the sum that you want to obtain
n <- 4 # number of generated random numbers, can be chosen arbitrarily
y <- sort(runif(n-1,0,x)) # choose n-1 random points to cut the range [0:x]
z <- c(y[1],diff(y),x-y[n-1]) # result: determine the length of the segments
#> z
#[1] 0.11761257 0.10908627 0.02723712 0.03364156
#> sum(z)
#[1] 0.2875775
#> all.equal(sum(z),x)
#[1] TRUE
The advantage here is that you can determine exactly which sum you want to obtain and how many numbers n
you want to generate for this. If you set, e.g., x <- 1
in the second line, the n
random numbers stored in the vector z
will add up to one.
Upvotes: 1
Reputation: 44340
If you really want to keep exactly the same procedure that you have posted (aka iteratively sample the n
values one at a time from the standard uniform distribution, rejecting any samples that cause your sum to exceed 1), then the following code is mathematically equivalent, shorter, and more efficient:
samp <- function(n) {
v <- rep(0, n)
for (i in 1:n) {
v[i] <- runif(1, 0, 1-sum(v))
}
v
}
Basically, this code uses the mathematical fact that if the sum of the vector is currently sum(v)
, then sampling from the standard uniform distribution until you get a value no greater than 1-sum(v)
is exactly equivalent to sampling in the uniform distribution from 0 to 1-sum(v)
. The advantage of using the latter approach is that it's much more efficient -- we don't need to keep rejecting samples and trying again, and can instead just sample once for each element.
To get a sense of the runtime differences, consider sampling 100 observations with n=10
, comparing to a working implementation of the code from your post (copied from my other answer to this question):
OP <- function(n) {
v <- rep(0, n)
for (i in 1:n){
rdom <- runif(1)
while (sum(v) + rdom > 1) rdom <- runif(1)
v[i] <- rdom
}
v
}
set.seed(144)
system.time(samples.OP <- replicate(100, OP(10)))
# user system elapsed
# 261.937 1.641 265.805
system.time(samples.josliber <- replicate(100, samp(10)))
# user system elapsed
# 0.004 0.001 0.004
In this case, the new approach is approaching 100,000 times faster.
Upvotes: 2
Reputation: 44340
It sounds like you're trying to uniformly sample from a space of n
variables where the following constraints hold:
x_1 + x_2 + ... + x_n <= 1
x_1 >= 0
x_2 >= 0
...
x_n >= 0
The "hit and run" algorithm is the mathematical machinery that enables you to do exactly this. In 2-dimensional space, the algorithm will sample uniformly from the following triangle, with each location in the shaded area being equally likely to be selected:
The algorithm is provided in R through the hitandrun
package, which requires you to specify the linear inequalities that define the space through a constraint matrix, direction vector, and right-hand side vector:
library(hitandrun)
n <- 3
constr <- list(constr = rbind(rep(1, n), -diag(n)),
dir = c(rep("<=", n+1)),
rhs = c(1, rep(0, n)))
set.seed(144)
samples <- hitandrun(constr, n.samples=1000)
head(samples, 10)
# [,1] [,2] [,3]
# [1,] 0.28914690 0.01620488 0.42663224
# [2,] 0.65489979 0.28455231 0.00199671
# [3,] 0.23215115 0.00661661 0.63597912
# [4,] 0.29644234 0.06398131 0.60707269
# [5,] 0.58335047 0.13891392 0.06151205
# [6,] 0.09442808 0.30287832 0.55118290
# [7,] 0.51462261 0.44094683 0.02641638
# [8,] 0.38847794 0.15501252 0.31572793
# [9,] 0.52155055 0.09921046 0.13304728
# [10,] 0.70503030 0.03770875 0.14299089
Breaking down this code a bit, we generated the following constraint matrix:
constr
# $constr
# [,1] [,2] [,3]
# [1,] 1 1 1
# [2,] -1 0 0
# [3,] 0 -1 0
# [4,] 0 0 -1
#
# $dir
# [1] "<=" "<=" "<=" "<="
#
# $rhs
# [1] 1 0 0 0
Reading across the first line of constr$constr
we have 1, 1, 1 which indicates "1*x1 + 1*x2 + 1*x3". The first element of constr$dir
is <=
, and the first element of constr$rhs
is 1
; putting it together we have x1 + x2 + x3 <= 1
. From the second row of constr$constr
we read -1, 0, 0 which indicates "-1*x1 + 0*x2 + 0*x3". The second element of constr$dir
is <=
and the second element of constr$rhs
is 0
; putting it together we have -x1 <= 0
which is the same as saying x1 >= 0
. The similar non-negativity constraints follow in the remaining rows.
Note that the hit and run algorithm has the nice property of having the exact same distribution for each of the variables:
hist(samples[,1])
hist(samples[,2])
hist(samples[,3])
Meanwhile, the distribution of the samples from your procedure will be highly uneven, and as n
increases this problem will get worse and worse.
OP <- function(n) {
v <- rep(0, n)
for (i in 1:n){
rdom <- runif(1)
while (sum(v) + rdom > 1) rdom <- runif(1)
v[i] <- rdom
}
v
}
samples.OP <- t(replicate(1000, OP(3)))
hist(samples.OP[,1])
hist(samples.OP[,2])
hist(samples.OP[,3])
An added advantage is that the hit-and-run algorithm appears faster -- I generated these 1000 replicates in 0.006 seconds on my computer with hit-and-run and it took 0.3 seconds using the modified code from the OP.
Upvotes: 1
Reputation: 6931
Here's a possible solution. It doesn't use I edited it to use a while
but the more generic repeat
.while
and save a couple of lines.
set.seed(0)
n <- 4
v <- numeric(n)
i <- 0
while (i < n) {
ith <- runif(1)
if (sum(c(v, ith)) < 1) {
i <- i+1
v[i] <- ith
}
}
v
# [1] 0.89669720 0.06178627 0.01339033 0.02333120
Using a repeat
block, you must check for the condition anyways, but, removing the growing problem, it would look very similar:
set.seed(0)
n <- 4
v <- numeric(n)
i <- 0
repeat {
ith <- runif(1)
if (sum(c(v, ith)) < 1) {
i <- i+1
v[i] <- ith
}
if (i == 4) break
}
Upvotes: 2