Reputation: 3066
For some base. Base 1 even. Some sort of complex substitution -ing.
Also, and of course, doing this is not a good idea in real life production code.
Upvotes: 15
Views: 19062
Reputation: 11267
You can relatively easy write a macro which adds two integers in binary. For example, a macro which sums two 4-bit integers in binary:
#include "stdio.h"
// XOR truth table
#define XOR_0_0 0
#define XOR_0_1 1
#define XOR_1_0 1
#define XOR_1_1 0
// OR truth table
#define OR_0_0 0
#define OR_0_1 1
#define OR_1_0 1
#define OR_1_1 1
// AND truth table
#define AND_0_0 0
#define AND_0_1 0
#define AND_1_0 0
#define AND_1_1 1
// concatenation macros
#define XOR_X(x,y) XOR_##x##_##y
#define OR_X(x,y) OR_##x##_##y
#define AND_X(x,y) AND_##x##_##y
#define OVERFLOW_X(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) OVERFLOW_##rc1 (rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
// Stringification macros
#define STR_X(x) #x
#define STR(x) STR_X(x)
// Boolean operators
#define XOR(x,y) XOR_X(x,y)
#define OR(x,y) OR_X(x,y)
#define AND(x,y) AND_X(x,y)
// carry_bit + bit1 + bit2
#define BIT_SUM(carry,bit1,bit2) XOR(carry, XOR(bit1,bit2))
// carry_bit + carry_bit_of(bit1 + bit2)
#define CARRY_SUM(carry,bit1,bit2) OR(carry, AND(bit1,bit2))
// Do we have overflow or maybe result perfectly fits into 4 bits?
#define OVERFLOW_0(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) SHOW_RESULT(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define OVERFLOW_1(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) SHOW_OVERFLOW(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
// Draft-horse macros which performs addition of two 4-bit integers
#define ADD_BIN_NUM(a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_4(0,0,0,0, 0,0,0,0, a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_4(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_3(rc1,rc2,rc3,AND(CARRY_SUM(0,a4,b4),OR(a4,b4)), rb1,rb2,rb3,BIT_SUM(0,a4,b4), a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_3(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_2(rc1,rc2,AND(CARRY_SUM(rc4,a3,b3),OR(a3,b3)),rc4, rb1,rb2,BIT_SUM(rc4,a3,b3),rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_2(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_1(rc1,AND(CARRY_SUM(rc3,a2,b2),OR(a2,b2)),rc3,rc4, rb1,BIT_SUM(rc3,a2,b2),rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_1(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) OVERFLOW(AND(CARRY_SUM(rc2,a1,b1),OR(a1,b1)),rc2,rc3,rc4, BIT_SUM(rc2,a1,b1),rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define OVERFLOW(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) OVERFLOW_X(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define SHOW_RESULT(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) STR(a1) STR(a2) STR(a3) STR(a4) " + " STR(b1) STR(b2) STR(b3) STR(b4) " = " STR(rb1) STR(rb2) STR(rb3) STR(rb4)
#define SHOW_OVERFLOW(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) STR(a1) STR(a2) STR(a3) STR(a4) " + " STR(b1) STR(b2) STR(b3) STR(b4) " = overflow"
void main()
{
printf("%s\n",
ADD_BIN_NUM(
0,0,0,1, // First 4-bit int
1,0,1,1) // Second 4-bit int
);
printf("%s\n",
ADD_BIN_NUM(
0,1,0,0, // First 4-bit int
0,1,0,1) // Second 4-bit int
);
printf("%s\n",
ADD_BIN_NUM(
1,0,1,1, // First 4-bit int
0,1,1,0) // Second 4-bit int
);
}
This macro can be easily extended for addition of two 8-bit or 16-bit or even 32-bit ints. So basically all that we need is token concatenation and substitution rules to achieve amazing results with macros.
I have changed formating of results and more importantly, I've added an overflow check.
Upvotes: 14
Reputation: 20838
I'm pretty sure the C/C++ preprocessor just does copy and paste—it doesn't actually evaluate any expressions. Expression evaluation is done by the compiler.
Upvotes: 0
Reputation: 71
It is quite possible to do bounded integer addition in the preprocessor. And, it is actually needed more often than one would really hope, i.e., the alternative to just have ((2) + (3))
in the program doesn't work. (E.g., you can't have a variable called x((2)+(3))
). The idea is simple: turn the addition to increments, which you don't mind (too much) listing them all out. E.g.,
#define INC(x) INC_ ## x
#define INC_0 1
#define INC_1 2
#define INC_2 3
#define INC_3 4
#define INC_4 5
#define INC_5 6
#define INC_6 7
#define INC_7 8
#define INC_8 9
#define INC_9 10
INC(7) // => 8
Now we know how to do addition to up to 1.
#define ADD(x, y) ADD_ ## x(y)
#define ADD_0(x) x
#define ADD_1(x) INC(x)
ADD(0, 2) // => 2
ADD(1, 2) // => 3
To add to even larger numbers, you need some sort of "recursion".
#define ADD_2(x) ADD_1(INC(x))
#define ADD_3(x) ADD_2(INC(x))
#define ADD_4(x) ADD_3(INC(x))
#define ADD_5(x) ADD_4(INC(x))
#define ADD_6(x) ADD_5(INC(x))
#define ADD_7(x) ADD_6(INC(x))
#define ADD_8(x) ADD_7(INC(x))
#define ADD_9(x) ADD_8(INC(x))
#define ADD_10(x) ADD_9(INC(x))
ADD(5, 2) // => 7
One has to be careful in this, however. E.g., the following does not work.
#define ADD_2(x) INC(ADD_1(x))
ADD(2, 2) // => INC_ADD_1(2)
For any extended use of such tricks, Boost Preprocessor is your friend.
Upvotes: 7
Reputation: 100648
Apparently, you can. If you take a look at the Boost Preprocessor library, you can do all sorts of stuff with the preprocessor, even integer addition.
Upvotes: 4
Reputation: 81143
Preprocessor macros can't really do arithmetic, but they can be usefully leveraged to do math with enumerations. The general trick is to have a macro which invokes other macros, and can be repeatedly invoked using different definitions of those other macros.
For example, something like:
#define MY_THINGS \ a_thing(FRED,4) \ a_thing(GEORGE,6) \ a_thing(HARRY,5) \ a_thing(HERMIONE,8) \ a_thing(RON,3) \ // This line left blank #define a_thing(name,size) EN_##name}; enum {EN_SIZE_##name=(size),EN_BLAH_##name = EN_##name+(size-1), enum {EN_FIRST_THING=0, MY_THINGS EN_TOTAL_SIZE}; #undef a_thing
That will allow one to 'allocate' a certain amount of space for each thing in e.g. an array. The math isn't done by the preprocessor, but the enumerations are still regarded as compile-time constants.
Upvotes: 1
Reputation: 1333
The C preprocessor can evaluate conditionals containing integer arithmetic. It will not substitute arithmetic expressions and pass the result to the compiler, but the compiler will evaluate arithmetic on compile-time constants and emit the result into the binary, as long as you haven't overloaded the operators being used.
Upvotes: 2
Reputation: 355039
The preprocessor operates on preprocessing tokens and the only time that it evaluates numbers is during the evaluation of a #if
or #elif
directive. Other than that, numbers aren't really numbers during preprocessing; they are classified as preprocessing number tokens, which aren't actually numbers.
You could evaluate basic arithmetic using token concatenation:
#define ADD_0_0 0
#define ADD_0_1 1
#define ADD_1_0 1
#define ADD_1_1 2
#define ADD(x, y) ADD##_##x##_##y
ADD(1, 0) // expands to 1
ADD(1, 1) // expands to 2
Really, though, there's no reason to do this, and it would be silly to do so (you'd have to define a huge number of macros for it to be even remotely useful).
It would be more sensible to have a macro that expands to an integral constant expression that can be evaluated by the compiler:
#define ADD(x, y) ((x) + (y))
ADD(1, 1) // expands to ((1) + (1))
The compiler will be able to evaluate the 1 + 1
expression.
Upvotes: 15
Reputation: 29466
I know it's not the preprocessor, but if it helps, you can do it with templates. Perhaps you could use this in conjunction with a macro to achieve what you need.
#include <iostream>
using namespace std;
template <int N, int M>
struct Add
{
static const int Value = N + M;
};
int main()
{
cout << Add<4, 5>::Value << endl;
return 0;
}
Upvotes: 5