Reputation: 3526
I'm new to pandas dataframes and would appreciate help with the following problem (similar to this). I have the following data:
data = {'Cat1': [2,1,2,1,2,1,2,1,1,1,2],
'Cat2': [0,0,0,0,0,0,1,1,1,1,1],
'values': [1,2,3,1,2,3,1,2,3,5,1]}
my_data = DataFrame(data)
I would like to perform a ttest_ind
for every category in Cat2
to distinguish between categories in Cat1
.
The way I see it, I could separate the data into
cat1_1 = my_data[my_data['Cat1']==1]
cat1_2 = my_data[my_data['Cat1']==2]
And then loop through every value in Cat2
to perform a t-test:
for cat2 in [0,1]:
subset_1 = cat1_1[cat1_1['Cat2']==cat2]
subset_2 = cat1_2[cat1_2['Cat2']==cat2]
t, p = ttest_ind(subset_1['values'], subset_2['values'])
But this seems really convoluted. Could there be a simpler solution, maybe with groupby
? Thanks a lot!
Upvotes: 2
Views: 515
Reputation: 863166
IIUC you can try groupby
by column Cat2
and apply
function f
:
import pandas as pd
from scipy.stats import ttest_ind
data = {'Cat1': [2,1,2,1,2,1,2,1,1,1,2],
'Cat2': [0,0,0,0,0,0,1,1,1,1,1],
'values': [1,2,3,1,2,3,1,2,3,5,1]}
my_data =pd.DataFrame(data)
print my_data
Cat1 Cat2 values
0 2 0 1
1 1 0 2
2 2 0 3
3 1 0 1
4 2 0 2
5 1 0 3
6 2 1 1
7 1 1 2
8 1 1 3
9 1 1 5
10 2 1 1
def f(x):
#print x
cat1_1 = x[x['Cat1']==1]
cat1_2 = x[x['Cat1']==2]
t, p = ttest_ind(cat1_1['values'], cat1_2['values'])
return pd.Series({'a':t, 'b':p})
print my_data.groupby('Cat2').apply(f)
a b
Cat2
0 0.00000 1.000000
1 2.04939 0.132842
Upvotes: 1