Reputation: 2442
I have data of a plot on two arrays that are stored in unsorted way, so the plot jumps from one place to another discontinuously:
I have tried one example of finding the closest point in a 2D array:
import numpy as np
def distance(pt_1, pt_2):
pt_1 = np.array((pt_1[0], pt_1[1]))
pt_2 = np.array((pt_2[0], pt_2[1]))
return np.linalg.norm(pt_1-pt_2)
def closest_node(node, nodes):
nodes = np.asarray(nodes)
dist_2 = np.sum((nodes - node)**2, axis=1)
return np.argmin(dist_2)
a = []
for x in range(50000):
a.append((np.random.randint(0,1000),np.random.randint(0,1000)))
some_pt = (1, 2)
closest_node(some_pt, a)
Can I use it somehow to "clean" my data? (in the above code, a
can be my data)
Exemplary data from my calculations is:
array([[ 2.08937872e+001, 1.99020033e+001, 2.28260611e+001,
6.27711094e+000, 3.30392288e+000, 1.30312878e+001,
8.80768833e+000, 1.31238275e+001, 1.57400130e+001,
5.00278061e+000, 1.70752624e+001, 1.79131456e+001,
1.50746185e+001, 2.50095731e+001, 2.15895974e+001,
1.23237801e+001, 1.14860312e+001, 1.44268222e+001,
6.37680265e+000, 7.81485403e+000],
[ -1.19702178e-001, -1.14050879e-001, -1.29711421e-001,
8.32977493e-001, 7.27437322e-001, 8.94389885e-001,
8.65931116e-001, -6.08199292e-002, -8.51922900e-002,
1.12333841e-001, -9.88131292e-324, 4.94065646e-324,
-9.88131292e-324, 4.94065646e-324, 4.94065646e-324,
0.00000000e+000, 0.00000000e+000, 0.00000000e+000,
-4.94065646e-324, 0.00000000e+000]])
Upvotes: 5
Views: 2436
Reputation: 54340
Sorting the data base on their angle relative to the center as in @JoeKington 's solution might have problems with some parts of the data:
In [1]:
import scipy.spatial as ss
import matplotlib.pyplot as plt
import numpy as np
import re
%matplotlib inline
In [2]:
data=np.array([[ 2.08937872e+001, 1.99020033e+001, 2.28260611e+001,
6.27711094e+000, 3.30392288e+000, 1.30312878e+001,
8.80768833e+000, 1.31238275e+001, 1.57400130e+001,
5.00278061e+000, 1.70752624e+001, 1.79131456e+001,
1.50746185e+001, 2.50095731e+001, 2.15895974e+001,
1.23237801e+001, 1.14860312e+001, 1.44268222e+001,
6.37680265e+000, 7.81485403e+000],
[ -1.19702178e-001, -1.14050879e-001, -1.29711421e-001,
8.32977493e-001, 7.27437322e-001, 8.94389885e-001,
8.65931116e-001, -6.08199292e-002, -8.51922900e-002,
1.12333841e-001, -9.88131292e-324, 4.94065646e-324,
-9.88131292e-324, 4.94065646e-324, 4.94065646e-324,
0.00000000e+000, 0.00000000e+000, 0.00000000e+000,
-4.94065646e-324, 0.00000000e+000]])
In [3]:
plt.plot(data[0], data[1])
plt.title('Unsorted Data')
Out[3]:
<matplotlib.text.Text at 0x10a5c0550>
See x values between 15 and 20 are not sorted correctly.
In [10]:
#Calculate the angle in degrees of [0, 360]
sort_index = np.angle(np.dot((data.T-data.mean(1)), np.array([1.0, 1.0j])))
sort_index = np.where(sort_index>0, sort_index, sort_index+360)
#sorted the data by angle and plot them
sort_index = sort_index.argsort()
plt.plot(data[0][sort_index], data[1][sort_index])
plt.title('Data Sorted by angle relatively to the centroid')
plt.plot(data[0], data[1], 'r+')
Out[10]:
[<matplotlib.lines.Line2D at 0x10b009e10>]
We can sort the data based on a nearest neighbor approach, but since the x and y are of very different scale, the choice of distance metrics becomes an important issue. We will just try all the distance metrics available in scipy
to get an idea:
In [7]:
def sort_dots(metrics, ax, start):
dist_m = ss.distance.squareform(ss.distance.pdist(data.T, metrics))
total_points = data.shape[1]
points_index = set(range(total_points))
sorted_index = []
target = start
ax.plot(data[0, target], data[1, target], 'o', markersize=16)
points_index.discard(target)
while len(points_index)>0:
candidate = list(points_index)
nneigbour = candidate[dist_m[target, candidate].argmin()]
points_index.discard(nneigbour)
points_index.discard(target)
#print points_index, target, nneigbour
sorted_index.append(target)
target = nneigbour
sorted_index.append(target)
ax.plot(data[0][sorted_index], data[1][sorted_index])
ax.set_title(metrics)
In [6]:
dmetrics = re.findall('pdist\(X\,\s+\'(.*)\'', ss.distance.pdist.__doc__)
In [8]:
f, axes = plt.subplots(4, 6, figsize=(16,10), sharex=True, sharey=True)
axes = axes.ravel()
for metrics, ax in zip(dmetrics, axes):
try:
sort_dots(metrics, ax, 5)
except:
ax.set_title(metrics + '(unsuitable)')
It looks like standardized euclidean and mahanalobis metrics give the best result. Note that we choose a starting point of the 6th data (index 5), it is the data point this the largest y value (use argmax
to get the index, of course).
In [9]:
f, axes = plt.subplots(4, 6, figsize=(16,10), sharex=True, sharey=True)
axes = axes.ravel()
for metrics, ax in zip(dmetrics, axes):
try:
sort_dots(metrics, ax, 13)
except:
ax.set_title(metrics + '(unsuitable)')
This is what happens if you choose the starting point of max. x value (index 13). It appears that mahanalobis metrics is better than standardized euclidean as it is not affected by the starting point we choose.
Upvotes: 3
Reputation: 284602
This is actually a problem that's tougher than you might think in general.
In your exact case, you might be able to get away with sorting by the y-values. It's hard to tell for sure from the plot.
Therefore, a better approach for somewhat circular shapes like this is to do a radial sort.
For example, let's generate some data somewhat similar to yours:
import numpy as np
import matplotlib.pyplot as plt
t = np.linspace(.2, 1.6 * np.pi)
x, y = np.cos(t), np.sin(t)
# Shuffle the points...
i = np.arange(t.size)
np.random.shuffle(i)
x, y = x[i], y[i]
fig, ax = plt.subplots()
ax.plot(x, y, color='lightblue')
ax.margins(0.05)
plt.show()
Okay, now let's try to undo that shuffle by using a radial sort. We'll use the centroid of the points as the center and calculate the angle to each point, then sort by that angle:
x0, y0 = x.mean(), y.mean()
angle = np.arctan2(y - y0, x - x0)
idx = angle.argsort()
x, y = x[idx], y[idx]
fig, ax = plt.subplots()
ax.plot(x, y, color='lightblue')
ax.margins(0.05)
plt.show()
Okay, pretty close! If we were working with a closed polygon, we'd be done.
However, we have one problem -- This closes the wrong gap. We'd rather have the angle start at the position of the largest gap in the line.
Therefore, we'll need to calculate the gap to each adjacent point on our new line and re-do the sort based on a new starting angle:
dx = np.diff(np.append(x, x[-1]))
dy = np.diff(np.append(y, y[-1]))
max_gap = np.abs(np.hypot(dx, dy)).argmax() + 1
x = np.append(x[max_gap:], x[:max_gap])
y = np.append(y[max_gap:], y[:max_gap])
Which results in:
As a complete, stand-alone example:
import numpy as np
import matplotlib.pyplot as plt
def main():
x, y = generate_data()
plot(x, y).set(title='Original data')
x, y = radial_sort_line(x, y)
plot(x, y).set(title='Sorted data')
plt.show()
def generate_data(num=50):
t = np.linspace(.2, 1.6 * np.pi, num)
x, y = np.cos(t), np.sin(t)
# Shuffle the points...
i = np.arange(t.size)
np.random.shuffle(i)
x, y = x[i], y[i]
return x, y
def radial_sort_line(x, y):
"""Sort unordered verts of an unclosed line by angle from their center."""
# Radial sort
x0, y0 = x.mean(), y.mean()
angle = np.arctan2(y - y0, x - x0)
idx = angle.argsort()
x, y = x[idx], y[idx]
# Split at opening in line
dx = np.diff(np.append(x, x[-1]))
dy = np.diff(np.append(y, y[-1]))
max_gap = np.abs(np.hypot(dx, dy)).argmax() + 1
x = np.append(x[max_gap:], x[:max_gap])
y = np.append(y[max_gap:], y[:max_gap])
return x, y
def plot(x, y):
fig, ax = plt.subplots()
ax.plot(x, y, color='lightblue')
ax.margins(0.05)
return ax
main()
Upvotes: 8
Reputation: 1931
If we do the assumption that the data are 2D and the x axis should be in an increasing fashion, then you could:
x_old
and store the result in a different variable, e.g. x_new
x_new
find its index in the x_old
arrayy_axis
array according to the indices that you got from previous stepI would do it with python list instead of numpy array due to list.index
method been more easily manipulated than the numpy.where
method.
E.g. (and assume that x_old
and y_old
are your previous numpy variables for x and y axis respectively)
import numpy as np
x_new_tmp = x_old.tolist()
y_new_tmp = y_old.tolist()
x_new = sorted(x_new_tmp)
y_new = [y_new_tmp[x_new_tmp.index(i)] for i in x_new]
Then you can plot x_new
and y_new
Upvotes: 1