swepab
swepab

Reputation: 527

Setting a count variable given binary flags in Python (pandas dataframe)

I have a dataframe with layout according to below, not including "flag_common":

cat      flag_1   flag_2  flag_3   pop      state       year    flag_common
value1   1        0       0        1.5      Ohio        2000    1
value3   1        1       0        1.7      Ohio        2001    1
value2   1        1       0        3.6      Ohio        2002    1
value11  0        1       0        2.4      Nevada      2001    2
value5   0        0       0        2.9      Nevada      2002    0
value9   0        0       1        11.1     New York    2003    3
value13  0        0       0        23.4     New York    2004    0
value10  1        1       0        0.1      California  2009    1
value7   0        0       0        0.3      California  2010    0
value14  0        1       1        1.1      California  2009    2

The column "flag_common" should be set by looking at the the binary flags and inserting value 1-3 depending if the flags are 1 or 0. When two of the flag are set to 1 for same row, the flag with the lowest number is inserted into "flag_common". This has to be dynamic, being able to handle flag_1 to "flag_n".

I have sort of solved it using an row iteration method and a for-loop, but my data is very big and its becomes quite slow, so I hope there is a "pythonic" way to write this which is vectorized.

Code for data frame is below:

df = pd.DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'New York', 'New York', 'California', 'California', 'California'],
                 'year' : [2000, 2001, 2002, 2001, 2002, 2003, 2004, 2009, 2010, 2009],
                 'pop' : [1.5, 1.7, 3.6, 2.4, 2.9, 11.1, 23.4, 0.1, 0.3, 1.1],
               'cat' : ['value1', 'value3', 'value2', 'value11', 'value5', 'value9', 'value13', 'value10', 'value7', 'value14'],
               'flag_1' : [1, 1,1,0,0,0,0,1,0,0],
               'flag_2' : [0, 1,1,1,0,0,0,1,0,1],
               'flag_3' : [0, 0, 0, 0,0,1,0,0,0, 1]
                })

Thanks i advance for any thoughts and suggestions!

Upvotes: 2

Views: 1273

Answers (1)

jezrael
jezrael

Reputation: 862741

You can use idxmax of columns in subset by columns flag_1, flag_2 and flag_3, then find positions by list comprehension with get_loc.

But positions with all 0 values are not 0, but flag_1. So use numpy.where for correct it.

#get min value of columns 'flag_1','flag_2','flag_3'
print df[['flag_1','flag_2','flag_3']].idxmax(axis=1)
0    flag_1
1    flag_1
2    flag_1
3    flag_2
4    flag_1
5    flag_3
6    flag_1
7    flag_1
8    flag_1
9    flag_2
dtype: object

#get position of flag
print df.columns.get_loc('flag_1')
1

#get positions all flags
flag = [df.columns.get_loc(k) for k in df[['flag_1','flag_2','flag_3']].idxmax(axis=1)] 
print flag
[1, 1, 1, 2, 1, 3, 1, 1, 1, 2]

#alternative solution for positions of flags - last digit has to be number
print [int(x[-1]) for x in df[['flag_1','flag_2','flag_3']].idxmax(axis=1)]
[1, 1, 1, 2, 1, 3, 1, 1, 1, 2]
#if all values in 'flag_1','flag_2','flag_3' are 0, get 0 else flag
df['new'] = np.where((df[['flag_1','flag_2','flag_3']].sum(axis=1)) == 0, 0, flag)
print df
       cat  flag_1  flag_2  flag_3   pop       state  year  flag_common  new
0   value1       1       0       0   1.5        Ohio  2000            1    1
1   value3       1       1       0   1.7        Ohio  2001            1    1
2   value2       1       1       0   3.6        Ohio  2002            1    1
3  value11       0       1       0   2.4      Nevada  2001            2    2
4   value5       0       0       0   2.9      Nevada  2002            0    0
5   value9       0       0       1  11.1    New York  2003            3    3
6  value13       0       0       0  23.4    New York  2004            0    0
7  value10       1       1       0   0.1  California  2009            1    1
8   value7       0       0       0   0.3  California  2010            0    0
9  value14       0       1       1   1.1  California  2009            2    2

EDIT:

You can also dynamically check columns with text flag:

#get columns where first value before _ is text 'flag'
cols = [x for x in df.columns if x.split('_')[0] == 'flag']
print cols
['flag_1', 'flag_2', 'flag_3']

#get min value of columns 'flag_1','flag_2','flag_3'
print df[cols].idxmax(axis=1)
0    flag_1
1    flag_1
2    flag_1
3    flag_2
4    flag_1
5    flag_3
6    flag_1
7    flag_1
8    flag_1
9    flag_2
dtype: object

#get positions of flag
print df.columns.get_loc('flag_1')
1

#get positions all flags
flag = [df.columns.get_loc(k) for k in df[cols].idxmax(axis=1)] 
print flag
[1, 1, 1, 2, 1, 3, 1, 1, 1, 2]

#alternative solution for positions of flags - last digit has to be number
print [int(x[-1]) for x in df[cols].idxmax(axis=1)]
[1, 1, 1, 2, 1, 3, 1, 1, 1, 2]
#if all values in 'flag_1','flag_2','flag_3' are 0, get 0 else flag
df['new'] = np.where((df[cols].sum(axis=1)) == 0, 0, flag)
print df
       cat  flag_1  flag_2  flag_3   pop       state  year  new
0   value1       1       0       0   1.5        Ohio  2000    1
1   value3       1       1       0   1.7        Ohio  2001    1
2   value2       1       1       0   3.6        Ohio  2002    1
3  value11       0       1       0   2.4      Nevada  2001    2
4   value5       0       0       0   2.9      Nevada  2002    0
5   value9       0       0       1  11.1    New York  2003    3
6  value13       0       0       0  23.4    New York  2004    0
7  value10       1       1       0   0.1  California  2009    1
8   value7       0       0       0   0.3  California  2010    0
9  value14       0       1       1   1.1  California  2009    2

Upvotes: 1

Related Questions