Reputation: 6333
I've posted the same question in CodeReview but failed to get an answer. so I am trying my luck here in SO.
Here is one of my programs that utilized memoization and array to improve performance and memory usage. The performance seems satisfactory but the memory usage is ridiculous and I can't figure out what's wrong:
{-# LANGUAGE BangPatterns #-}
import Data.Functor
import Data.Array (Array)
import qualified Data.Array as Arr
import Control.DeepSeq
genColtzArr n = collatzArr
where collatzArr = Arr.array (1, n) $ take n $ map (\v -> (v, collatz v 0)) [1..]
collatz 1 !acc = 1 + acc
collatz !m !acc
| even m = go (m `div` 2) acc
| otherwise = go (3 * m + 1) acc
where go !l !acc
| l <= n = let !v = collatzArr Arr.! l in 1 + acc + v
| otherwise = collatz l $ 1 + acc
collatz
here means this guy. This function is supposed to receive a number n
, and then return an array indexing from 1 to n
, and in which each cell contains the length of the link from the index to 1 by applying Collatz formula.
But the memory usage of this method is so high. Here is the profiler result (ghc option -prof -fprof-auto -rtsopts
, run time option +RTS -p
, n == 500000
):
total alloc = 730,636,136 bytes (excludes profiling overheads)
COST CENTRE MODULE %time %alloc
genColtzArr.collatz Main 40.4 34.7
genColtzArr.collatz.go Main 25.5 14.4
COST CENTRE MODULE no. entries %time %alloc %time %alloc
genColtzArr Main 105 1 0.0 0.0 74.7 72.1
genColtzArr.collatzArr Main 106 1 8.0 20.8 74.7 72.1
genColtzArr.collatzArr.\ Main 107 500000 0.9 2.2 66.8 51.3
genColtzArr.collatz Main 109 1182582 40.4 34.7 65.9 49.1
genColtzArr.collatz.go Main 110 1182581 25.5 14.4 25.5 14.4
Please note that -O2
is not a desired answer. I want to figure out what's the problem in this program and in general, how should I spot time and memory inefficiencies in Haskell code. Specifically, I have no idea why this code, with tail recursion and bang pattern, can consume so much memory.
the same code with -s
produces this:
1,347,869,264 bytes allocated in the heap
595,901,528 bytes copied during GC
172,105,056 bytes maximum residency (7 sample(s))
897,704 bytes maximum slop
315 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 2408 colls, 0 par 0.412s 0.427s 0.0002s 0.0075s
Gen 1 7 colls, 0 par 0.440s 0.531s 0.0759s 0.1835s
INIT time 0.000s ( 0.000s elapsed)
MUT time 0.828s ( 0.816s elapsed)
GC time 0.852s ( 0.958s elapsed)
RP time 0.000s ( 0.000s elapsed)
PROF time 0.000s ( 0.000s elapsed)
EXIT time 0.004s ( 0.017s elapsed)
Total time 1.684s ( 1.791s elapsed)
%GC time 50.6% (53.5% elapsed)
Alloc rate 1,627,861,429 bytes per MUT second
Productivity 49.4% of total user, 46.4% of total elapsed
so it takes 300 meg. that is still too large.
Update2full code
{-# LANGUAGE BangPatterns #-}
import Data.Functor
import Data.Array (Array)
import qualified Data.Array as Arr
import Control.DeepSeq
genColtzArr n = collatzArr
where collatzArr = Arr.array (1, n) $ take n $ map (\v -> (v, collatz v 0)) [1..]
collatz 1 !acc = 1 + acc
collatz !m !acc
| even m = go (m `div` 2) acc
| otherwise = go (3 * m + 1) acc
where go !l !acc
| l <= n = let !v = collatzArr Arr.! l in 1 + acc + v
| otherwise = collatz l $ 1 + acc
genLongestArr n = Arr.array (1, n) llist
where colatz = genColtzArr n
llist = (1, 1):zipWith (\(n1, a1) l2 ->
let l1 = colatz Arr.! a1
in (n1 + 1, if l2 < l1 then a1 else n1 + 1))
llist (tail $ Arr.elems colatz)
main :: IO ()
main = getLine >> do
ns <- map read <$> lines <$> getContents
let m = maximum ns
let lar = genLongestArr m
let iter [] = return ()
iter (h:t) = (putStrLn $ show $ lar Arr.! h) >> iter t
iter ns
Upvotes: 0
Views: 321
Reputation: 3080
As the other answer on CodeReview hints, it's alright for a 500000-element boxed array to comsume ~20MB memory, however it's not only the array but a lot of things all together:
Although you put bang patterns every where, array initialization itself is a lazy foldr:
-- from GHC.Arr
array (l,u) ies
= let n = safeRangeSize (l,u)
in unsafeArray' (l,u) n
[(safeIndex (l,u) n i, e) | (i, e) <- ies]
unsafeArray' :: Ix i => (i,i) -> Int -> [(Int, e)] -> Array i e
unsafeArray' (l,u) n@(I# n#) ies = runST (ST $ \s1# ->
case newArray# n# arrEleBottom s1# of
(# s2#, marr# #) ->
foldr (fill marr#) (done l u n marr#) ies s2#)
So unless you evaluated the last bit of an array, it's holding reference to the list used in initialization. Usually the list can be GC'd on fly while you evaluating the array, but in your case the mutual references and self references disturbed the common GC pattern.
llist
is self-referencing to produce every single element, so it will not be GC'd until you evaluated the last element of itgenColtzArr
so genColtzArr
won't be GC'd until llist
is fully evaluatedcollatz
is tail recursive but it's not, it's mutual recursive with collatzArr
so again both of them won't be GC'd until fully evaluatedEverything combined, your program will keep three 500000-element list-like structures in memory and results ~80MB peak heap size.
The obvious solution is to force every array / list to normal form before it's used in another so you won't keep multiple copys of the same data in the memory.
genLongestArr :: Int -> Array Int Int
genLongestArr n =
let collatz = genColtzArr n
-- deepseq genColtzArr before mapping over it
-- this is equivalent to your recursive definition
in collatz `deepseq` (Arr.listArray (1,n) $ fmap fst $ scanl' (maxWith snd) (0, 0) $ Arr.assocs collatz)
maxWith :: Ord a => (b -> a) -> b -> b -> b
maxWith f b b' = case compare (f b) (f b') of
LT -> b'
_ -> b
And in main
:
-- deepseq lar before mapping over it
-- this is equivalent to your iter loop
lar `deepseq` mapM_ (print . (lar Arr.!)) ns
Nothing can be done with genColtzArr
, it's using itself for memorization so the mutual recursion is kind of necessary.
Now the heap graph peaks at ~20MB as it should:
(Disclaimer: All programs in this answer were compiled with -O0
)
Upvotes: 2