Reputation: 41
I am new to multi thread programming, so this question might seem a little silly, but I really need to work this out so I can apply it to my project (which is way more complicated). Follow is my code, I am trying to have 2 threads (parent and child) to update the same shared timer as they execute and stop when the timer reaches a specific limit. But when I compile and execute this follow piece of code, there are 2 different outcomes: 1. child prints "done by child at 200000" but the program does not exit; 2. after child prints "done by child at 200000" and exits, parent keeps executing, prints a couple of dozen lines of "parent doing work" and "parent at 190000", then prints "done by parent at 200000" and the program exits properly. The behavior I want is for whichever thread that updates the timer, hits the limit and exits, the other thread should stop executing and exit as well. I think I might be missing something trivial here, but I've tried changing the code in many ways and nothing I tried seem to work. Any help will be much appreciated :)
#include <iostream>
#include <unistd.h>
#include <mutex>
#include <time.h>
using namespace std;
mutex mtx;
int main () {
int rc;
volatile int done = 0;
clock_t start = clock();
volatile clock_t now;
rc = fork();
if (rc == 0) { //child
while (true) {
cout << "child doing work" << endl;
mtx.lock();
now = clock() - start;
if (done) {
mtx.unlock();
break;
}
if (now >= 200000 && !done) {
done = 1;
cout << "done by child at " << now << endl;
mtx.unlock();
break;
}
cout << "child at " << now << endl;
mtx.unlock();
}
_exit(0);
}
else { // parent
while (true) {
cout << "parent doing work" << endl;
mtx.lock();
now = clock() - start;
if (done) {
mtx.unlock();
break;
}
if (now >= 200000 && !done) {
done = 1;
cout << "done by parent at " << now << endl;
mtx.unlock();
break;
}
cout << "parent at " << now << endl;
mtx.unlock();
}
}
return 0;
}
Upvotes: 2
Views: 4351
Reputation: 73366
Multi-processes
Your code is multi-processes and not multi-threading: fork()
will create a new separate process by duplicating the calling process.
The consequence: At the moment of the duplication, all the variables contain the same value in both processes. But each process has its own copy, so a variable modified in the parent will not be updated in the child's address space an vice-versa.
If you want to share variables between processes, you should have a look at this SO question
Multithread
For real multithreading, you should use std::thread
. And forget about volatile, because it's not thread safe. Use <atomic>
instead, as explained in this awesome video.
Here a first try:
#include <iostream>
#include <mutex>
#include <thread>
#include <atomic>
#include <time.h>
using namespace std;
void child (atomic<int>& done, atomic<clock_t>& now, clock_t start)
{
while (!done) {
cout << "child doing work" << endl;
now = clock() - start;
if (now >= 2000 && !done) {
done = 1;
cout << "done by child at " << now << endl;
}
cout << "child at " << now << endl;
this_thread::yield();
}
}
void parent (atomic<int>& done, atomic<clock_t>& now, clock_t start)
{
while (!done) {
cout << "parent doing work" << endl;
now = clock() - start;
if (now >= 2000 && !done) {
done = 1;
cout << "done by parent at " << now << endl;
}
cout << "parent at " << now << endl;
this_thread::yield();
}
}
int main () {
atomic<int> done{0};
clock_t start = clock();
atomic<clock_t> now;
thread t(child, std::ref(done), std::ref(now), start); // attention, without ref, you get clones
parent (done, now, start);
t.join();
return 0;
}
Note that you don't need to protect atomic accesses with a mutex, and that if you want to do, lock_guard
would be recommended alternative.
This example is of course rather weak, because if you test an atomic variable if the if-condition, it's value might already have changed when entering the if-block. This doesn't cause a problem in your logic where "done" means "done". But if you'd need a more cauthious approach,
compare_exchange_weak()
or compare_exchange_strong()
could help further.
Upvotes: 6