user277465
user277465

Reputation:

copy_from_user and segmentation

I was reading a paragraph from the "The Linux Kernel Module Programming Guide" and I have a couple of doubts related to the following paragraph.

The reason for copy_from_user or get_user is that Linux memory (on Intel architecture, it may be different under some other processors) is segmented. This means that a pointer, by itself, does not reference a unique location in memory, only a location in a memory segment, and you need to know which memory segment it is to be able to use it. There is one memory segment for the kernel, and one for each of the processes.

However it is my understanding that Linux uses paging instead of segmentation and that virtual addresses at and above 0xc0000000 have the kernel mapping in.

  1. Do we use copy_from_user in order to accommodate older kernels?
  2. Do the current linux kernels use segmentation in any way at all? If so how?
  3. If (1) is not true, are there any other advantages to using copy_from_user?

Upvotes: 4

Views: 738

Answers (1)

Gil Hamilton
Gil Hamilton

Reputation: 12347

Yeah. I don't like that explanation either. The details are essentially correct in a technical sense (see also Why does Linux on x86 use different segments for user processes and the kernel?) but as you say, linux typically maps the memory so that kernel code could access it directly, so I don't think it's a good explanation for why copy_from_user, etc. actually exist.

IMO, the primary reason for using copy_from_user / copy_to_user (and friends) is simply that there are a number of things to be checked (dangers to be guarded against), and it makes sense to put all of those checks in one place. You wouldn't want every place that needs to copy data in and out from user-space to have to re-implement all those checks. Especially when the details may vary from one architecture to the next.

For example, it's possible that a user-space page is actually not present when you need to copy to or from that memory and hence it's important that the call be made from a context that can accommodate a page fault (and hence being put to sleep).

Also, user-space data pointers need to be checked carefully to ensure that they actually point to user-space and that they point to data regions, and that the copy length doesn't wrap beyond the end of the valid regions, and so forth.

Finally, it's possible that user-space actually doesn't share the same page mappings with the kernel. There used to be a linux patch for 32-bit x86 that made the complete 4G of virtual address space available to user-space processes. In that case, kernel code could not make the assumption that a user-space pointer was directly accessible, and those functions might need to map individual user-space pages one at a time in order to access them. (See 4GB/4GB Kernel VM Split)

Upvotes: 5

Related Questions