John
John

Reputation: 1591

Filtering rows based on column values in Spark dataframe Scala

I have a dataframe (Spark):

id  value 
3     0
3     1
3     0
4     1
4     0
4     0

I want to create a new dataframe:

3 0
3 1
4 1

I need to remove all the rows after 1 (value) for each id. I tried with window functions in Spark dataframe (Scala) but couldn't find a solution. It seems like I am going in a wrong direction.

I am looking for a solution in Scala.

Output using monotonically_increasing_id:

 scala> val data = Seq((3,0),(3,1),(3,0),(4,1),(4,0),(4,0)).toDF("id", "value")
data: org.apache.spark.sql.DataFrame = [id: int, value: int]

scala> val minIdx = dataWithIndex.filter($"value" === 1).groupBy($"id").agg(min($"idx")).toDF("r_id", "min_idx")
minIdx: org.apache.spark.sql.DataFrame = [r_id: int, min_idx: bigint]

scala> dataWithIndex.join(minIdx,($"r_id" === $"id") && ($"idx" <= $"min_idx")).select($"id", $"value").show
+---+-----+
| id|value|
+---+-----+
|  3|    0|
|  3|    1|
|  4|    1|
+---+-----+

The solution won't work if we did a sorted transformation in the original dataframe. That time the monotonically_increasing_id() is generated based on original DF rather than sorted DF. I have missed that requirement before.

All suggestions are welcome.

Upvotes: 14

Views: 101381

Answers (4)

mputha
mputha

Reputation: 405

use isin method and filter as below:

val data = Seq((3,0,2),(3,1,3),(3,0,1),(4,1,6),(4,0,5),(4,0,4),(1,0,7),(1,1,8),(1,0,9),(2,1,10),(2,0,11),(2,0,12)).toDF("id", "value","sorted")
val idFilter = List(1, 2)
 data.filter($"id".isin(idFilter:_*)).show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
|  1|    0|     7|
|  1|    1|     8|
|  1|    0|     9|
|  2|    1|    10|
|  2|    0|    11|
|  2|    0|    12|
+---+-----+------+

Ex: filter based on val
val valFilter = List(0)
data.filter($"value".isin(valFilter:_*)).show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
|  3|    0|     2|
|  3|    0|     1|
|  4|    0|     5|
|  4|    0|     4|
|  1|    0|     7|
|  1|    0|     9|
|  2|    0|    11|
|  2|    0|    12|
+---+-----+------+

Upvotes: 0

Abu Shoeb
Abu Shoeb

Reputation: 5153

You can simply use groupBy like this

val df2 = df1.groupBy("id","value").count().select("id","value")

Here your df1 is

id  value 
3     0
3     1
3     0
4     1
4     0
4     0

And resultant dataframe is df2 which is your expected output like this

id  value 
3     0
3     1
4     1
4     0

Upvotes: 0

John
John

Reputation: 1591

Hi I found the solution using Window and self join.

val data = Seq((3,0,2),(3,1,3),(3,0,1),(4,1,6),(4,0,5),(4,0,4),(1,0,7),(1,1,8),(1,0,9),(2,1,10),(2,0,11),(2,0,12)).toDF("id", "value","sorted")

data.show

scala> data.show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
|  3|    0|     2|
|  3|    1|     3|
|  3|    0|     1|
|  4|    1|     6|
|  4|    0|     5|
|  4|    0|     4|
|  1|    0|     7|
|  1|    1|     8|
|  1|    0|     9|
|  2|    1|    10|
|  2|    0|    11|
|  2|    0|    12|
+---+-----+------+




val sort_df=data.sort($"sorted")

scala> sort_df.show
+---+-----+------+
| id|value|sorted|
+---+-----+------+
|  3|    0|     1|
|  3|    0|     2|
|  3|    1|     3|
|  4|    0|     4|
|  4|    0|     5|
|  4|    1|     6|
|  1|    0|     7|
|  1|    1|     8|
|  1|    0|     9|
|  2|    1|    10|
|  2|    0|    11|
|  2|    0|    12|
+---+-----+------+



var window=Window.partitionBy("id").orderBy("$sorted")

 val sort_idx=sort_df.select($"*",rowNumber.over(window).as("count_index"))

val minIdx=sort_idx.filter($"value"===1).groupBy("id").agg(min("count_index")).toDF("idx","min_idx")

val result_id=sort_idx.join(minIdx,($"id"===$"idx") &&($"count_index" <= $"min_idx"))

result_id.show

+---+-----+------+-----------+---+-------+
| id|value|sorted|count_index|idx|min_idx|
+---+-----+------+-----------+---+-------+
|  1|    0|     7|          1|  1|      2|
|  1|    1|     8|          2|  1|      2|
|  2|    1|    10|          1|  2|      1|
|  3|    0|     1|          1|  3|      3|
|  3|    0|     2|          2|  3|      3|
|  3|    1|     3|          3|  3|      3|
|  4|    0|     4|          1|  4|      3|
|  4|    0|     5|          2|  4|      3|
|  4|    1|     6|          3|  4|      3|
+---+-----+------+-----------+---+-------+

Still looking for a more optimized solutions.Thanks

Upvotes: 2

David Griffin
David Griffin

Reputation: 13927

One way is to use monotonically_increasing_id() and a self-join:

val data = Seq((3,0),(3,1),(3,0),(4,1),(4,0),(4,0)).toDF("id", "value")
data.show
+---+-----+
| id|value|
+---+-----+
|  3|    0|
|  3|    1|
|  3|    0|
|  4|    1|
|  4|    0|
|  4|    0|
+---+-----+

Now we generate a column named idx with an increasing Long:

val dataWithIndex = data.withColumn("idx", monotonically_increasing_id())
// dataWithIndex.cache()

Now we get the min(idx) for each id where value = 1:

val minIdx = dataWithIndex
               .filter($"value" === 1)
               .groupBy($"id")
               .agg(min($"idx"))
               .toDF("r_id", "min_idx")

Now we join the min(idx) back to the original DataFrame:

dataWithIndex.join(
  minIdx,
  ($"r_id" === $"id") && ($"idx" <= $"min_idx")
).select($"id", $"value").show
+---+-----+
| id|value|
+---+-----+
|  3|    0|
|  3|    1|
|  4|    1|
+---+-----+

Note: monotonically_increasing_id() generates its value based on the partition of the row. This value may change each time dataWithIndex is re-evaluated. In my code above, because of lazy evaluation, it's only when I call the final show that monotonically_increasing_id() is evaluated.

If you want to force the value to stay the same, for example so you can use show to evaluate the above step-by-step, uncomment this line above:

//  dataWithIndex.cache()

Upvotes: 12

Related Questions