Reputation: 165
I'm trying to figure out how to create a predicate in prolog that sums the squares of only the even numbers in a given list.
Expected output:
?- sumsq_even([1,3,5,2,-4,6,8,-7], Sum).
Sum = 120 ;
false.
What I know how to do is to remove all the odd numbers from a list:
sumsq_even([], []).
sumsq_even([Head | Tail], Sum) :-
not(0 is Head mod 2),
!,
sumsq_even(Tail, Sum).
sumsq_even([Head | Tail], [Head | Sum]) :-
sumsq_even(Tail, Sum).
Which gives me:
Sum = [2, -4, 6, 8]
And I also know how to sum all the squares of the numbers in a list:
sumsq_even([], 0)
sumsq_even([Head | Tail], Sum) :-
sumsq_even(Tail, Tail_Sum),
Sum is Head * Head + Tail_Sum.
But I can't seem to figure out how to connect these two together. I'm thinking I may have gone the wrong way about it but I'm not sure how to define proper relationships to get it to make sense.
Thanks!
Upvotes: 6
Views: 2322
Reputation: 8140
You can actually do both tasks (filtering the even number and summing them up) at once:
:- use_module(library(clpfd)).
nums_evensumsq([],0).
nums_evensumsq([X|Xs],S0) :-
X mod 2 #= 0,
nums_evensumsq(Xs,S1),
S0 #= S1 + X * X.
nums_evensumsq([X|Xs],S) :-
X mod 2 #= 1,
nums_evensumsq(Xs,S).
Querying the predicate gives the desired result:
?- nums_evensumsq([1,3,5,2,-4,6,8,-7],S).
S = 120 ? ;
no
You can write it even shorter using if_/3 as defined here:
nums_evensumsq([],0).
nums_evensumsq([X|Xs],S0) :-
nums_evensumsq(Xs,S1),
Y #= X mod 2,
if_(Y = 0, S0 #= S1 + X * X, S0 #= S1).
Note that the comparison in the first argument of if_/3 is done with =/3 as defined here.
Upvotes: 2
Reputation: 18726
Using clpfd and Prolog lambda write:
:- use_module(library(clpfd)). :- use_module(library(lambda)). zs_sumevensq(Zs, S) :- maplist(\Z^X^(X #= Z*Z*(1-(Z mod 2))), Zs, Es), sum(Es, #=, S).
Sample query as given by the OP:
?- zs_sumevensq([1,3,5,2,-4,6,8,-7], S).
S = 120.
Upvotes: 2
Reputation: 60014
Once you mastered the basics, you could be interested to learn about builtins. Library aggregate, provides a simple way to handle lists, using member/2 as list elements 'accessor':
sumsq_even(Ints, Sum) :-
aggregate(sum(C), I^(member(I, Ints), (I mod 2 =:= 0 -> C is I*I ; C = 0)), Sum).
Upvotes: 0
Reputation: 303
Split your problem into smaller parts. As you already said, you have two different functionalities that should be combined:
even
)sumsq
)So, in the first place, use different predicate names for different functionalities:
even([], []).
even([Head | Tail], Sum) :-
not(0 is Head mod 2),
!,
even(Tail, Sum).
even([Head | Tail], [Head | Sum]) :-
even(Tail, Sum).
sumsq([], 0).
sumsq([Head | Tail], Sum) :-
sumsq(Tail, Tail_Sum),
Sum is Head * Head + Tail_Sum.
In a third predicate you can now combine the two subsequent smaller steps:
sumsq_even(List, Sum) :-
even(List, Even_List),
sumsq(Even_List, Sum).
In this rule, first the (input) list is reduced to even elements (Even_List
) and after that the sum of the squares are calculated.
This is the result for your example:
sumsq_even([1,3,5,2,-4,6,8,-7], Sum).
S = 120.
Upvotes: 3