Reputation: 739
I have the following structured array:
import numpy as np
x = np.rec.array([(22,2,200.,2000.), (44,2,400.,4000.), (55,5,500.,5000.), (33,3,400.,3000.)],
dtype={'names':['subcase','id', 'vonmises','maxprincipal'], 'formats':['i4','i4','f4','f4']})
I am trying to get the max vonmises for each id.
For example the max vonmises for id 2 would be 400. And i do want the corresponding subcase, and maxprincipal.
Here is what i have done so far:
print repr(x[['subcase','id','vonmises']][(x['id']==2) & (x['vonmises']==max(x['vonmises'][x['id']==2]))])
Here is the output:
array([(44, 2, 400.0)],
dtype=(numpy.record, [('subcase', '<i4'), ('id', '<i4'), ('vonmises', '<f4')]))
The issue i am having now is that i want this to work for all ids that are in the array, not just id=2.
i.e. want to get the following output:
array([(44, 2, 400.0),(55, 5, 500.0),(33, 3, 400.0)],
dtype=(numpy.record, [('subcase', '<i4'), ('id', '<i4'), ('vonmises', '<f4')]))
Is there a nice way to accomplish this without specifying each individual id?
Upvotes: 3
Views: 658
Reputation: 10759
Using the numpy_indexed package, this would be a simple one-liner:
import numpy_indexed as npi
ids, maxvonmises = npi.group_by(x.id).max(x.vonmises)
Probably similar performance to pandas, but a lot more readable, and no need to adapt your dataformat to the problem at hand.
Upvotes: 2
Reputation: 97601
Here's an approach without groupby:
# sort as desired
x.sort(order=['id','vonmises'])
# keep the first element, and every element with a different id to the one before it
keep = np.empty(x.shape, dtype=np.bool)
keep[0] = True
keep[1:] = x[:-1].id != x[1:].id
x_filt = x[keep]
Which gives:
rec.array([(22, 2, 200.0, 2000.0), (33, 3, 400.0, 3000.0), (55, 5, 500.0, 5000.0)],
dtype=[('subcase', '<i4'), ('id', '<i4'), ('vonmises', '<f4'), ('maxprincipal', '<f4')])
Upvotes: 2
Reputation: 231385
Here's an approach using np.sort
(or argsort
) followed by itertools.groupby
. But this grouping tools produces a generator of generators, which is messier to work with.
In [29]: x = np.rec.array([(22,2,200.,2000.), (44,2,400.,4000.), (55,5,500.,5000.), (33,3,400.,3000.)],
dtype={'names':['subcase','id', 'vonmises','maxprincipal'], 'formats':['i4','i4','f4','f4']})
In [30]: ind=x.argsort(order=['id','vonmises'])
In [31]: ind
Out[31]:
rec.array([0, 1, 3, 2],
dtype=int32)
In [32]: x[ind]
Out[32]:
rec.array([(22, 2, 200.0, 2000.0), (44, 2, 400.0, 4000.0), (33, 3, 400.0, 3000.0),
(55, 5, 500.0, 5000.0)],
dtype=[('subcase', '<i4'), ('id', '<i4'), ('vonmises', '<f4'), ('maxprincipal', '<f4')])
In [33]: import itertools
In [34]: [list(v) for k,v in itertools.groupby(x[ind],lambda i:i['id'])]
Out[34]:
[[(22, 2, 200.0, 2000.0), (44, 2, 400.0, 4000.0)],
[(33, 3, 400.0, 3000.0)],
[(55, 5, 500.0, 5000.0)]]
Then we have to fetch the last (or first for min) record of each group, and then reconstitute the recarray
.
In [39]: mx=[list(v)[-1] for k,v in itertools.groupby(x[ind],lambda i:i['id'])]
In [43]: np.rec.fromrecords(mx,dtype=x.dtype)
Out[43]:
rec.array([(44, 2, 400.0, 4000.0), (33, 3, 400.0, 3000.0), (55, 5, 500.0, 5000.0)],
dtype=[('subcase', '<i4'), ('id', '<i4'), ('vonmises', '<f4'), ('maxprincipal', '<f4')])
Elements of mx
are np.record
with the correct dtype
, but mx
itself is a list.
Or compactly:
g=itertools.groupby(np.sort(x,order=['id','vonmises']), lambda i:i['id'])
np.rec.fromrecords([list(v)[-1] for k,v in g], dtype=x.dtype)
Upvotes: 3
Reputation: 31171
I do not know why you use this format but here is a hack with pandas
:
import pandas as pd
df = pd.DataFrame(x)
df_ = df.groupby('id')['vonmises'].max().reset_index()
In [213]: df_.merge(df, on=['id','vonmises'])[['id','vonmises','subcase']]
Out[213]:
array([[ 2., 400., 44.],
[ 3., 400., 33.],
[ 5., 500., 55.]], dtype=float32)
Upvotes: 2