Reputation:
How can I generate a 2D boolean array using a list of tuples that shows the indices of the True values?
For example I have the following list of tuples:
lst = [(0,1), (0, 2), (1, 0), (1, 3), (2,1)]
What I do is, I first generate an array of False's:
arr = np.repeat(False, 12).reshape(3, 4)
Then, iterate over the list to assign True values:
for tup in lst:
arr[tup] = True
print(arr)
array([[False, True, True, False],
[ True, False, False, True],
[False, True, False, False]], dtype=bool)
It seems like a common use case to me so I was wondering if there is a built-in method for this, without the loops.
Upvotes: 4
Views: 1370
Reputation: 221504
Here's an approach using NumPy's linear indexing
that works for tuples of any lengths intended to generate multi-dimensional arrays -
# Convert list of indices to a 2D array version
idx = np.array(lst)
# Decide on the shape of output array based on the extents, then initialize
shp = idx.max(0)+1
out = np.zeros(shp,dtype=bool)
# Using np.put insert 1s in out at places specified by linear indices version
np.put(out,np.ravel_multi_index(idx.T,shp),1)
Sample input, output -
In [54]: lst
Out[54]: [(0, 1, 3), (0, 2, 2), (1, 0, 0), (1, 3, 1), (2, 1, 3)]
In [55]: out
Out[55]:
array([[[False, False, False, False],
[False, False, False, True],
[False, False, True, False],
[False, False, False, False]],
[[ True, False, False, False],
[False, False, False, False],
[False, False, False, False],
[False, True, False, False]],
[[False, False, False, False],
[False, False, False, True],
[False, False, False, False],
[False, False, False, False]]], dtype=bool)
Upvotes: 0
Reputation: 231335
zip(*...)
is a handy way of 'transposing' a list of lists (or tuples). And A[x,y]
is the same as A[(x,y)]
.
In [397]: lst = [(0,1), (0, 2), (1, 0), (1, 3), (2,1)]
In [398]: tuple(zip(*lst)) # make a tuple of tuples (or lists)
Out[398]: ((0, 0, 1, 1, 2), (1, 2, 0, 3, 1))
In [399]: A=np.zeros((3,4),dtype=bool) # make an array of False
In [400]: A[tuple(zip(*lst))] = True # assign True to the 5 values
In [401]: A
Out[401]:
array([[False, True, True, False],
[ True, False, False, True],
[False, True, False, False]], dtype=bool)
Upvotes: 3
Reputation: 250871
You can use multidimensional indexing for this:
>>> lst = np.array(lst)
>>> arr = np.repeat(False, 12).reshape(3, 4)
>>> arr[lst[:,0], lst[:,1]] = True
>>> arr
array([[False, True, True, False],
[ True, False, False, True],
[False, True, False, False]], dtype=bool)
Upvotes: 2