Reputation: 22031
I have a numpy 2D array of size 3600 * 7200. I have another array of same shape which I want to use as a mask.
The problem is that when I do something like this:
import numpy as np
N = 10
arr_a = np.random.random((N,N))
arr_b = np.random.random((N,N))
arr_a[arr_b > 0.0]
The resulting array is no longer 2D, it is 1D. How do I get a 2D array in return?
Upvotes: 3
Views: 2136
Reputation:
You can use np.where to preserve the shape:
np.where(arr_b > 0.0, arr_a, np.nan)
It will take the corresponding values from arr_a when arr_b's value is greater than 0, otherwise it will use np.nan.
import numpy as np
N = 5
arr_a = np.random.randn(N,N)
arr_b = np.random.randn(N,N)
np.where(arr_b > 0.0, arr_a, np.nan)
Out[107]:
array([[ 0.5743081 , nan, -1.69559034, nan, 0.4987268 ],
[ 0.33038264, nan, -0.27151598, nan, -0.73145628],
[ nan, 0.46741932, 0.61225086, nan, 1.08327459],
[ nan, -1.20244926, 1.5834266 , -0.04675223, -1.14904974],
[ nan, 1.20307104, -0.86777899, nan, nan]])
Upvotes: 2