Reputation: 391
My goal is to compare each value from the column "year" against the appropriate column year (i.e. 1999, 2000). I then want to return the corresponding value from the corresponding column. For example, for Afghanistan (first row), year 2004, I want to find the column named "2004" and return the value from the row that contains afghanistan.
Here is the table. For reference this table is the result of a sql join between educational attainment in a single defined year and a table for gdp per country for years 1999 - 2010. My ultimate goal is to return the gdp from the year that the educational data is from.
country year men_ed_yrs women_ed_yrs total_ed_yrs 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
0 Afghanistan 2004 11 5 8 NaN NaN 2461666315 4128818042 4583648922 5285461999 6.275076e+09 7.057598e+09 9.843842e+09 1.019053e+10 1.248694e+10 1.593680e+10
1 Albania 2004 11 11 11 3414760915 3632043908 4060758804 4435078648 5746945913 7314865176 8.158549e+09 8.992642e+09 1.070101e+10 1.288135e+10 1.204421e+10 1.192695e+10
2 Algeria 2005 13 13 13 48640611686 54790060513 54744714110 56760288396 67863829705 85324998959 1.030000e+11 1.170000e+11 1.350000e+11 1.710000e+11 1.370000e+11 1.610000e+11
3 Andorra 2008 11 12 11 1239840270 1401694156 1484004617 1717563533 2373836214 2916913449 3.248135e+09 3.536452e+09 4.010785e+09 4.001349e+09 3.649863e+09 3.346317e+09
4 Anguilla 2008 11 11 11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
gdp_ed_list = []
for value in df_combined_column_named['year']: #loops through each year in year column
if value in df_combined_column_named.columns: #compares year to column names
idx = df_combined_column_named[df_combined_column_named['year'][value]].index.tolist() #supposed to get the index associated with value
gdp_ed = df_combined_column_named.get_value(idx, value) #get the value of the cell found at idx, value
gdp_ed_list.append(gdp_ed) #append to a list
Currently, my code is getting stuck at the index.list() section. It is returning the error:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-85-361acb97edd4> in <module>()
2 for value in df_combined_column_named['year']: #loops through each year in year column
3 if value in df_combined_column_named.columns: #compares year to column names
----> 4 idx = df_combined_column_named[df_combined_column_named['year'][value]].index.tolist()
5 gdp_ed = df_combined_column_named.get_value(idx, value)
6 gdp_ed_list.append(gdp_ed)
KeyError: u'2004'
Any thoughts?
Upvotes: 3
Views: 5203
Reputation: 879471
It looks like you are trying to match the value in the year
column to column labels and then extract the value in the corresponding cells. You could do that by looping through the rows (see below) but I think it would be not be the fastest way.
Instead, you could use pd.melt
to coalesce the columns with year-like labels into a single column, say, year_col
:
In [38]: melted = pd.melt(df, id_vars=['country', 'year', 'men_ed_yrs', 'women_ed_yrs', 'total_ed_yrs'], var_name='year_col')
In [39]: melted
Out[39]:
country year men_ed_yrs women_ed_yrs total_ed_yrs year_col value
0 Afghanistan 2004 11 5 8 1999 NaN
1 Albania 2004 11 11 11 1999 3.414761e+09
2 Algeria 2005 13 13 13 1999 4.864061e+10
3 Andorra 2008 11 12 11 1999 1.239840e+09
4 Anguilla 2008 11 11 11 1999 NaN
5 Afghanistan 2004 11 5 8 2000 NaN
...
The benefit of "melting" the DataFrame in this way is that
now you would have both year
and year_col
columns. The values you are looking for are in the rows where year
equals year_col
. And that is easy to obtain by using .loc
:
In [41]: melted.loc[melted['year'] == melted['year_col']]
Out[41]:
country year men_ed_yrs women_ed_yrs total_ed_yrs year_col \
25 Afghanistan 2004 11 5 8 2004
26 Albania 2004 11 11 11 2004
32 Algeria 2005 13 13 13 2005
48 Andorra 2008 11 12 11 2008
49 Anguilla 2008 11 11 11 2008
value
25 5.285462e+09
26 7.314865e+09
32 1.030000e+11
48 4.001349e+09
49 NaN
Thus, you could use
import numpy as np
import pandas as pd
nan = np.nan
df = pd.DataFrame({'1999': [nan, 3414760915.0, 48640611686.0, 1239840270.0, nan],
'2000': [nan, 3632043908.0, 54790060513.0, 1401694156.0, nan],
'2001': [2461666315.0, 4060758804.0, 54744714110.0, 1484004617.0, nan],
'2002': [4128818042.0, 4435078648.0, 56760288396.0, 1717563533.0, nan],
'2003': [4583648922.0, 5746945913.0, 67863829705.0, 2373836214.0, nan],
'2004': [5285461999.0, 7314865176.0, 85324998959.0, 2916913449.0, nan],
'2005': [6275076000.0, 8158549000.0, 103000000000.0, 3248135000.0, nan],
'2006': [7057598000.0, 8992642000.0, 117000000000.0, 3536452000.0, nan],
'2007': [9843842000.0, 10701010000.0, 135000000000.0, 4010785000.0, nan],
'2008': [10190530000.0, 12881350000.0, 171000000000.0, 4001349000.0, nan],
'2009': [12486940000.0, 12044210000.0, 137000000000.0, 3649863000.0, nan],
'2010': [15936800000.0, 11926950000.0, 161000000000.0, 3346317000.0, nan],
'country': ['Afghanistan', 'Albania', 'Algeria', 'Andorra', 'Anguilla'],
'men_ed_yrs': [11, 11, 13, 11, 11],
'total_ed_yrs': [8, 11, 13, 11, 11],
'women_ed_yrs': [5, 11, 13, 12, 11],
'year': ['2004', '2004', '2005', '2008', '2008']})
melted = pd.melt(df, id_vars=['country', 'year', 'men_ed_yrs', 'women_ed_yrs',
'total_ed_yrs'], var_name='year_col')
result = melted.loc[melted['year'] == melted['year_col']]
print(result)
Why was a KeyError
raised:
The KeyError
is being raised by df_combined_column_named['year'][value]
. Suppose value
is '2004'
. Then df_combined_column_named['year']
is a Series containing string representations of years and indexed by integers (like 0, 1, 2, ...). df_combined_column_named['year'][value]
fails because it attempts to index this Series with the string '2004'
which is not in the integer index.
Alternatively, here is another way to achieve the goal by looping through the rows using iterrows
. This is perhaps simpler to understand, but in general using iterrows
is slow compared to other column-based Pandas-centric methods:
data = []
for idx, row in df.iterrows():
data.append((row['country'], row['year'], row[row['year']]))
result = pd.DataFrame(data, columns=['country', 'year', 'value'])
print(result)
prints
country year value
0 Afghanistan 2004 5.285462e+09
1 Albania 2004 7.314865e+09
2 Algeria 2005 1.030000e+11
3 Andorra 2008 4.001349e+09
4 Anguilla 2008 NaN
Upvotes: 3