Reputation: 461
I am looking for a better way to use scipy's curve_fit()
I am currently using it to fit linear combinations of the parameters and a vector x.
For example, here is a fitting function I pass for trying the fit with 5 parameters, m0-m4:
def degFour(x, m0, m1, m2, m3, m4):
return x[0]*m0 + x[1]*m1 + x[2]*m2 + x[3]*m3 + x[4]*m4
I have made more of these up to degTen using the same pattern. It does work, too.
My x vector:
[[ 1. 1. 1. 1. 1. ]
[ 1. 0.99990931 0.99963727 0.99918392 0.99854935]
[ 1. 0.94872591 0.80016169 0.56954235 0.28051747]
[ 1. 0.84717487 0.43541052 -0.10943716 -0.62083535]
[ 1. 0.77991807 0.21654439 -0.44214431 -0.90621706]
[ 1. 0.73162055 0.07053725 -0.62840754 -0.99004899]
[ 1. 0.68866877 -0.05147065 -0.75956123 -0.99470154]
[ 1. 0.64892616 -0.15778967 -0.85371386 -0.95020484]
[ 1. 0.6114128 -0.25234877 -0.91999134 -0.8726402 ]
[ 1. 0.57600247 -0.33644232 -0.96358568 -0.77361313]
[ 1. 0.54225052 -0.41192874 -0.98898767 -0.66062942]
[ 1. 0.29541145 -0.82546415 -0.78311458 0.36278212]
[ 1. 0.09546594 -0.98177251 -0.28291761 0.92775452]
[ 1. -0.07539697 -0.9886306 0.22447646 0.95478091]
[ 1. -0.22050008 -0.90275943 0.61861713 0.62994918]
[ 1. -0.33964821 -0.76927818 0.86221613 0.18357784]
[ 1. -0.54483185 -0.40631651 0.9875802 -0.66981378]
[ 1. -0.71937092 0.03498904 0.66903073 -0.99755153]
[ 1. -1. 1. -1. 1. ]]
My y data:
[ 3.50032 3.5007 3.6328 3.94564 4.12814 4.2651 4.39586
4.51982 4.64394 4.76738 4.88654 5.90314 6.93304 7.99074
9.04278 10.02426 12.01392 14.0592 18.1689 ]
Using curve_fit(degFour, xdata.T, ydata), I get the correct coefficients:
[ 9.14562709 -7.05004692 1.66932215 -0.27868686 0.02097462]
I recreate the x data depending on the degree, so I will always pass in data with the correct shape.
I tried a version of fbstj's answer regarding variable input parameters.
I used this:
def vararg(x, *args):
return sum(a * x[i] for i, a in enumerate(args))
and ended up with this:
Traceback (most recent call last):
File "D:/Libraries/Desktop/PScratch2/vararg.py", line 18, in <module>
print(curve_fit(vararg, deg4kary.T, deg4ydata))
File "C:\Python35\lib\site-packages\scipy\optimize\minpack.py", line 606, in curve_fit
raise ValueError("Unable to determine number of fit parameters.")
ValueError: Unable to determine number of fit parameters.
As you can see from the trace, I just passed the function itself. I am stuck.
Upvotes: 0
Views: 871
Reputation: 74182
You are fitting a multivariate linear model to your data. This can be expressed as a dot product between your x
vector, with shape (npoints, nparams)
, and a single (nparams,)
vector of coefficients, say m
:
def linear(x, m):
return x.dot(m)
x = np.random.randn(100, 5)
m = np.random.randn(5)
y = linear(x, m)
There's really no need to use curve_fit
to get the m
coefficients - it's simpler and more efficient to use np.linalg.lstsq
to solve linear systems such as this:
m_hat, residuals, rank, singular_vals = np.linalg.lstsq(x, y)
Here, m_hat
will be an (n_params,)
vector containing the least-squares estimates of m0
, m1
, m2
etc. This will work for any number of coefficients.
Upvotes: 2