Reputation: 83
I want to use first order citizen Type in Swift to decide which function to call.
func sf(v: [Float]) -> Float{
}
func df(v: [Double]) -> Double {
}
func f<T: RealType>(seq ls: [T]) -> T {
if T.self == Float.self {
return sf(ls) // 1. where sf: Float -> Void
} else if T.self == Double.self {
return df(ls) // 2. where df : Double -> Void
}
}
The type inference system couldn't notice that under one branch T == Float and Double in the other ?
Is here a missing feature, complex feature or bug ?
Edit:
typealias RealType = protocol<FloatingPointType, Hashable, Equatable, Comparable, FloatLiteralConvertible, SignedNumberType>
for my prototype but will become a protocol
Upvotes: 1
Views: 95
Reputation: 32826
You are trying to combine static resolution given by generic with runtime decisions, and this is not possible.
You can simply overload f
for both Float
and Double
to obtain what you need:
func f(seq ls: [Float]) -> Float {
return sf(ls) // 1. where sf: Float -> Void
}
func f(seq ls: [Double]) -> Double {
return df(ls) // 2. where df : Double -> Void
}
However, if you want RealType
to be a generic placeholder that you can use over other types than Float
or, Double
, then you can do something like this:
protocol RealType {
static func processArray(v: [Self]) -> Self
}
extension Float: RealType {
static func processArray(v: [Float]) -> Float {
return sf(v)
}
}
extension Double: RealType {
static func processArray(v: [Double]) -> Double {
return df(v)
}
}
func sf(v: [Float]) -> Float{
return 0
}
func df(v: [Double]) -> Double {
return 0
}
func f<T: RealType>(seq ls: [T]) -> T {
return T.processArray(ls)
}
This will give you both type safety, which is one of Swift's main advantages, and scalability as whenever you need to add support for f
over another type, you need to only declare that type as conforming to RealType
, and implement the processArray
method.
Upvotes: 1