Reputation: 767
I have a dataframe:
df = pd.DataFrame({'id' : ['abarth 1.4 a','abarth 1 a','land rover 1.3 r','land rover 2',
'land rover 5 g','mazda 4.55 bl'],
'series': ['a','a','r','','g', 'bl'] })
I would like to remove the 'series' string from the corresponding id, so the end result should be:
Final result should be 'id': ['abarth 1.4','abarth 1','land rover 1.3','land rover 2','land rover 5', 'mazda 4.55']
Currently I am using df.apply:
df.id = df.apply(lambda x: x['id'].replace(x['series'], ''), axis =1)
But this removes all instances of the strings, even in other words, like so:
'id': ['brth 1.4','brth 1','land ove 1.3','land rover 2','land rover 5', 'mazda 4.55']
Should I somehow mix and match regex with the variable inside df.apply, like so?
df.id = df.apply(lambda x: x['id'].replace(r'\b' + x['series'], ''), axis =1)
Upvotes: 16
Views: 45789
Reputation: 181
IDK why but with the part below
df.loc[df.make == '', 'make']
OR
df.loc[df['make'] == '', 'make']
I get the error - KeyError: 'make'
So instead I did (in case someone sees the same error):
df['make'] = df['id']
df['make'] = df.id.str.split().str.get(0)
Worked for me.
Upvotes: 3
Reputation: 127
It's simple. Use as follows:
df['make'] = df['id'].str.split(' ').str[0]
Upvotes: 13
Reputation: 57
If I got your question correctly you can just use replace
function:
df.make = df.make.replace("", test.id)
Upvotes: 0
Reputation: 294546
Use str.split
and str.get
and assign using loc
only where df.make == ''
df.loc[df.make == '', 'make'] = df.id.str.split().str.get(0)
print df
id make
0 abarth 1.4 abarth
1 abarth 1 abarth
2 land rover 1.3 rover
3 land rover 2 rover
4 land rover 5 rover
5 mazda 4.55 mazda
Upvotes: 33
Reputation: 107767
Consider a regex solution with loc
where it extracts everything before first space:
df.loc[df['make']=='', 'make'] = df['id'].str.extract('(.*) ', expand=False)
Alternatively, use numpy's where
which allows the if/then/else conditional logic:
df['make'] = np.where(df['make']=='',
df['id'].str.extract('(.*) ', expand=False),
df['make'])
Upvotes: 1