Reputation: 4327
I've got a pandas DataFrame with a boolean column sorted by another column and need to calculate reverse cumulative sum of the boolean column, that is, amount of true values from current row to bottom.
Example
In [13]: df = pd.DataFrame({'A': [True] * 3 + [False] * 5, 'B': np.random.rand(8) })
In [15]: df = df.sort_values('B')
In [16]: df
Out[16]:
A B
6 False 0.037710
2 True 0.315414
4 False 0.332480
7 False 0.445505
3 False 0.580156
1 True 0.741551
5 False 0.796944
0 True 0.817563
I need something that will give me a new column with values
3
3
2
2
2
2
1
1
That is, for each row it should contain amount of True values on this row and rows below.
I've tried various methods using .iloc[::-1]
but result is not that is desired.
It looks like I'm missing some obvious bit of information. I've starting using Pandas only yesterday.
Upvotes: 36
Views: 35856
Reputation: 11
The cumulative sum goes from 0 to the total sum.
You can reflect it backwards substracting it from the total sum of the column.
Here goes an example with a dataframe called df and a row called dividends.
df['Dividends'].sum() - df['Dividends'].cumsum()
Upvotes: 1
Reputation: 8941
If wanting to reverse cumulative sum column-wise:
(-df).cumsum(axis=1).add(1).shift(1,axis=1,fill_value=1.0)
Upvotes: 2
Reputation: 879749
Reverse column A, take the cumsum, then reverse again:
df['C'] = df.loc[::-1, 'A'].cumsum()[::-1]
import pandas as pd
df = pd.DataFrame(
{'A': [False, True, False, False, False, True, False, True],
'B': [0.03771, 0.315414, 0.33248, 0.445505, 0.580156, 0.741551, 0.796944, 0.817563],},
index=[6, 2, 4, 7, 3, 1, 5, 0])
df['C'] = df.loc[::-1, 'A'].cumsum()[::-1]
print(df)
yields
A B C
6 False 0.037710 3
2 True 0.315414 3
4 False 0.332480 2
7 False 0.445505 2
3 False 0.580156 2
1 True 0.741551 2
5 False 0.796944 1
0 True 0.817563 1
Alternatively, you could count the number of True
s in column A
and subtract the (shifted) cumsum:
In [113]: df['A'].sum()-df['A'].shift(1).fillna(0).cumsum()
Out[113]:
6 3
2 3
4 2
7 2
3 2
1 2
5 1
0 1
Name: A, dtype: object
But this is significantly slower. Using IPython to perform the benchmark:
In [116]: df = pd.DataFrame({'A':np.random.randint(2, size=10**5).astype(bool)})
In [117]: %timeit df['A'].sum()-df['A'].shift(1).fillna(0).cumsum()
10 loops, best of 3: 19.8 ms per loop
In [118]: %timeit df.loc[::-1, 'A'].cumsum()[::-1]
1000 loops, best of 3: 701 µs per loop
Upvotes: 48
Reputation: 308
Similar to unutbus first suggestion, but without the deprecated ix:
df['C']=df.A[::-1].cumsum()
Upvotes: 13
Reputation: 25639
This works but is slow... like @unutbu answer. True resolves to 1. Fails on False, or any other value though.
df[2] = df.groupby('A').cumcount(ascending=False)+1
df[1] = np.where(df['A']==True,df[2],None)
df[1] = df[1].fillna(method='bfill').fillna(0)
del df[2]
A B 1
# 3 False 0.277557 3.0
# 7 False 0.400751 3.0
# 6 False 0.431587 3.0
# 5 False 0.481006 3.0
# 1 True 0.534364 3.0
# 2 True 0.556378 2.0
# 0 True 0.863192 1.0
# 4 False 0.916247 0.0
Upvotes: 0