Reputation: 8214
Normally, when we know where should we insert the newaxis, we can do a[:, np.newaxis,...]
. Is there any good way to insert the newaxis at certain axis?
Here is how I do it now. I think there must be some much better ways than this:
def addNewAxisAt(x, axis):
_s = list(x.shape)
_s.insert(axis, 1)
return x.reshape(tuple(_s))
def addNewAxisAt2(x, axis):
ind = [slice(None)]*x.ndim
ind.insert(axis, np.newaxis)
return x[ind]
Upvotes: 4
Views: 454
Reputation: 231615
np.insert
does
slobj = [slice(None)]*ndim
...
slobj[axis] = slice(None, index)
...
new[slobj] = arr[slobj2]
Like you it constructs a list of slices, and modifies one or more elements.
apply_along_axis
constructs an array, and converts it to indexing tuple
outarr[tuple(i.tolist())] = res
Other numpy functions work this way as well.
My suggestion is to make initial list large enough to hold the None
. Then I don't need to use insert
:
In [1076]: x=np.ones((3,2,4),int)
In [1077]: ind=[slice(None)]*(x.ndim+1)
In [1078]: ind[2]=None
In [1080]: x[ind].shape
Out[1080]: (3, 2, 1, 4)
In [1081]: x[tuple(ind)].shape # sometimes converting a list to tuple is wise
Out[1081]: (3, 2, 1, 4)
Turns out there is a np.expand_dims
In [1090]: np.expand_dims(x,2).shape
Out[1090]: (3, 2, 1, 4)
It uses reshape
like you do, but creates the new shape with tuple concatenation.
def expand_dims(a, axis):
a = asarray(a)
shape = a.shape
if axis < 0:
axis = axis + len(shape) + 1
return a.reshape(shape[:axis] + (1,) + shape[axis:])
Timings don't tell me much about which is better. They are the 2 µs range, where simply wrapping the code in a function makes a difference.
Upvotes: 2
Reputation: 221674
That singleton dimension (dim length = 1)
could be added as a shape criteria to the original array shape with np.insert
and thus directly change its shape, like so -
x.shape = np.insert(x.shape,axis,1)
Well, we might as well extend this to invite more than one new axes with a bit of np.diff
and np.cumsum
trick, like so -
insert_idx = (np.diff(np.append(0,axis))-1).cumsum()+1
x.shape = np.insert(x.shape,insert_idx,1)
Sample runs -
In [151]: def addNewAxisAt(x, axis):
...: insert_idx = (np.diff(np.append(0,axis))-1).cumsum()+1
...: x.shape = np.insert(x.shape,insert_idx,1)
...:
In [152]: A = np.random.rand(4,5)
In [153]: addNewAxisAt(A, axis=1)
In [154]: A.shape
Out[154]: (4, 1, 5)
In [155]: A = np.random.rand(5,6,8,9,4,2)
In [156]: addNewAxisAt(A, axis=5)
In [157]: A.shape
Out[157]: (5, 6, 8, 9, 4, 1, 2)
In [158]: A = np.random.rand(5,6,8,9,4,2,6,7)
In [159]: addNewAxisAt(A, axis=(1,3,4,6))
In [160]: A.shape
Out[160]: (5, 1, 6, 1, 1, 8, 1, 9, 4, 2, 6, 7)
Upvotes: 3