Reputation: 21
So I was trying to implement the A* algorithm. The Basic Logic is almost complete but there is this one problem I just cant fix.
When request a path Unity stops responding and my PC keeps getting slower until it hangs and I have to force shut down.
Here is the simplified code:
public static List<Node> ReturnPath(Vector3 pointA, Vector3 pointB)
{
/* A Bunch of initializations */
while (!pathFound)
{
//add walkable neighbours to openlist
foreach (Node n in GetNeighbours(currentNode))
{
if (!n.walkable)
continue;
n.gCost = currentNode.gCost + GetManDist (currentNode, n);
n.hCost = GetManDist (n, B);
openList.Add (n);
n.parent = currentNode;
}
//check openList for lowest fcost or lower hCost
for (int i = 0; i < openList.Count; i++)
{
if ((openList [i].fCost < currentNode.fCost) || (openList [i].fCost == currentNode.fCost && openList [i].hCost < currentNode.hCost))
{
//make the currentNode = node with lowest fcost
currentNode = openList [i];
}
openList.Remove (currentNode);
if(!closedList.Contains(currentNode))
closedList.Add (currentNode);
}
//Check if the currentNode it destination
if (currentNode == B)
{
Debug.Log ("Path Detected");
path = RetracePath (A, B);
pathFound = true;
}
}
return path;
}
This works fine as long as the destination is two nodes away. If it's any more than that, the problem mentioned above occurs. Why is that? My first guess that i was putting too much into the openList.
NOTES: Im breaking a 30 x 30 unit platform(floor) into 1x1 squares called "nodes" GetManDist() Gets the Manhattan Distance between 2 nodes.
UPDATE: Here's the working code. Was too long for a comment
public List<Node> ReturnPath(Vector3 pointA, Vector3 pointB)
{
List<Node> openList = new List<Node>();
List<Node> closedList = new List<Node>();
List<Node> path = new List<Node> ();
Node A = ToNode (pointA);
Node B = ToNode (pointB);
Node currentNode;
bool pathFound = false;
A.hCost = GetManDist(A, B);
A.gCost = 0;
openList.Add (A);
while (!pathFound) // while(openList.Count > 0) might be better because it handles the possibility of a non existant path
{
//Set to arbitrary element
currentNode = openList [0];
//Check openList for lowest fcost or lower hCost
for (int i = 0; i < openList.Count; i++)
{
if ((openList [i].fCost < currentNode.fCost) || ((openList [i].fCost == currentNode.fCost && openList [i].hCost < currentNode.hCost)))
{
//Make the currentNode = node with lowest fcost
currentNode = openList [i];
}
}
//Check if the currentNode is destination
if (currentNode.hCost == 0) //Better than if(currentNode == B)
{
path = RetracePath (A, B);
pathFound = true;
}
//Add walkable neighbours to openlist
foreach (Node n in GetNeighbours(currentNode))
{
//Avoid wasting time checking unwalkable and those already checked
if (!n.walkable || closedList.Contains(n))
continue;
//Movement Cost to neighbour
int newGCost = currentNode.gCost + GetManDist (currentNode, n);
//Calculate g_Cost, Update if new g_cost to neighbour is less than an already calculated one
if (n.gCost > newGCost || !openList.Contains (n))
{
n.gCost = newGCost;
n.hCost = GetManDist (n, B);
n.parent = currentNode; //So we can retrace
openList.Add (n);
}
}
//We don't need you no more...
openList.Remove (currentNode);
//Avoid redundancy of nodes in closedList
if(!closedList.Contains(currentNode))
closedList.Add (currentNode);
}
return path;
}
Upvotes: 0
Views: 351
Reputation: 21
The problem was with the value of currentNode. Since we are checking for the node with the lowest f_Cost or lower h_Cost in the openlist against currentNode, in some cases when the pathfinding encounters a wall, it has to go back or take a turn which results in increasing f_Cost and h_Cost (both greater than that of the currentNode). Therefore there is no longer any node in the openlist with a lower f_Cost/h_Cost resulting in an infinite loop. The simple solution was setting the currentNode to an arbitrary element in the openList everytime.
Adding
currentNode = openlist[0];
at the beginning of the loop.
Upvotes: 1