Reputation: 1327
Is there a more idiomatic way of doing this in Pandas?
I want to set-up a column that repeats the integers 1 to 48, for an index of length 2000:
df = pd.DataFrame(np.zeros((2000, 1)), columns=['HH'])
h = 1
for i in range(0,2000) :
df.loc[i,'HH'] = h
if h >=48 : h =1
else : h += 1
Upvotes: 0
Views: 88
Reputation: 2161
df = pd.DataFrame({'HH':np.append(np.tile(range(1,49),int(2000/48)), range(1,np.mod(2000,48)+1))})
That is, appending 2 arrays:
(1) np.tile(range(1,49),int(2000/48))
len(np.tile(range(1,49),int(2000/48)))
1968
(2) range(1,np.mod(2000,48)+1)
len(range(1,np.mod(2000,48)+1))
32
And constructing the DataFrame
from a corresponding dictionary.
Upvotes: 0
Reputation: 37606
Here is more direct and faster way:
pd.DataFrame(np.tile(np.arange(1, 49), 2000 // 48 + 1)[:2000], columns=['HH'])
The detailed step:
np.arange(1, 49)
creates an array from 1
to 48
(included)>>> l = np.arange(1, 49)
>>> l
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
np.tile(A, N)
repeats the array A
N
times, so in this case you get [1 2 3 ... 48 1 2 3 ... 48 ... 1 2 3 ... 48]
. You should repeat the array 2000 // 48 + 1
times in order to get at least 2000 values.>>> r = np.tile(l, 2000 // 48 + 1)
>>> r
array([ 1, 2, 3, ..., 46, 47, 48])
>>> r.shape # The array is slightly larger than 2000
(2016,)
[:2000]
retrieves the 2000 first values from the generated array to create your DataFrame
.>>> d = pd.DataFrame(r[:2000], columns=['HH'])
Upvotes: 3