Reputation: 1573
I'm working on a multi-label classifier. I have many output labels [1, 0, 0, 1...] where 1 indicates that the input belongs to that label and 0 means otherwise.
In my case the loss function that I use is based on MSE. I want to change the loss function in a way that when the output label is -1 than it will change to the predicted probability of this label.
Check the attached images to best understand what I mean: The scenario is - when the output label is -1 I want the MSE to be equal to zero:
And in such case I want it to change to:
In such case the MSE of the second label (the middle output) will be zero (this is a special case where I don't want the classifier to learn about this label).
It feels like this is a needed method and I don't really believe that I'm the first to think about it so firstly I wanted to know if there's a name for such way of training Neural Net and second I would like to know how can I do it.
I understand that I need to change some stuff in the loss function but I'm really newbie to Theano and not sure about how to look there for a specific value and how to change the content of the tensor.
Upvotes: 7
Views: 5356
Reputation: 3767
I believe this is what you looking for.
import theano
from keras import backend as K
from keras.layers import Dense
from keras.models import Sequential
def customized_loss(y_true, y_pred):
loss = K.switch(K.equal(y_true, -1), 0, K.square(y_true-y_pred))
return K.sum(loss)
if __name__ == '__main__':
model = Sequential([ Dense(3, input_shape=(4,)) ])
model.compile(loss=customized_loss, optimizer='sgd')
import numpy as np
x = np.random.random((1, 4))
y = np.array([[1,-1,0]])
output = model.predict(x)
print output
# [[ 0.47242549 -0.45106074 0.13912249]]
print model.evaluate(x, y) # keras's loss
# 0.297689884901
print (output[0, 0]-1)**2 + 0 +(output[0, 2]-0)**2 # double-check
# 0.297689929093
Upvotes: 7