Reputation: 1247
I have the following question, which is actually from a coding test I recently took:
A function f(n) = a*n + b*n*(floor(log(n)/log(2))) + c*n*n*n
exists.
At a particular value, let f(n) = k
;
Given k, a, b, c
, find n
.
For a given value of k
, if no n
value exists, then return 0.
1 <= n < 2^63-1
0 < a, b < 100
0 <= c < 100
0 < k < 2^63-1
The logic here is that since f(n)
is purely increasing for a given a, b and c, I can find n
by binary search.
The code I wrote was as follows:
#include<iostream>
#include<stdlib.h>
#include<math.h>
using namespace std;
unsigned long long logToBase2Floor(unsigned long long n){
return (unsigned long long)(double(log(n))/double(log(2)));
}
#define f(n, a, b, c) (a*n + b*n*(logToBase2Floor(n)) + c*n*n*n)
unsigned long long findNByBinarySearch(unsigned long long k, unsigned long long a, unsigned long long b, unsigned long long c){
unsigned long long low = 1;
unsigned long long high = (unsigned long long)(pow(2, 63)) - 1;
unsigned long long n;
while(low<=high){
n = (low+high)/2;
cout<<"\n\n k= "<<k;
cout<<"\n f(n,a,b,c)= "<<f(n,a,b,c)<<" low = "<<low<<" mid="<<n<<" high = "<<high;
if(f(n,a,b,c) == k)
return n;
else if(f(n,a,b,c) < k)
low = n+1;
else high = n-1;
}
return 0;
}
I then tried it with a few test cases:
int main(){
unsigned long long n, a, b, c;
n = (unsigned long long)pow(2,63)-1;
a = 99;
b = 99;
c = 99;
cout<<"\nn="<<n<<" a="<<a<<" b="<<b<<" c="<<c<<" k = "<<f(n, a, b, c);
cout<<"\nANSWER: "<<findNByBinarySearch(f(n, a, b, c), a, b, c)<<endl;
n = 1000;
cout<<"\nn="<<n<<" a="<<a<<" b="<<b<<" c="<<c<<" k = "<<f(n, a, b, c);
cout<<"\nANSWER: "<<findNByBinarySearch(f(n, a, b, c), a, b, c)<<endl;
return 0;
}
Then something weird happened.
The code works for the test case n = (unsigned long long)pow(2,63)-1;
, correctly returning that value of n. But it did not work for n=1000
. I printed the output and saw the following:
n=1000 a=99 b=99 c=99 k = 99000990000
k= 99000990000
f(n,a,b,c)= 4611686018427387904 low = 1 mid=4611686018427387904 high = 9223372036854775807
...
...
k= 99000990000
f(n,a,b,c)= 172738215936 low = 1 mid=67108864 high = 134217727
k= 99000990000
f(n,a,b,c)= 86369107968 low = 1 mid=33554432 high = 67108863
k= 99000990000
f(n,a,b,c)= 129553661952 low = 33554433 mid=50331648 high = 67108863**
...
...
k= 99000990000
f(n,a,b,c)= 423215328047139441 low = 37748737 mid=37748737 high = 37748737
ANSWER: 0
Something didn't seem right mathematically. How was it that the value of f(1000)
was greater than the value of f(33554432)
?
So I tried the same code in Python, and got the following values:
>>> f(1000, 99, 99, 99)
99000990000L
>>> f(33554432, 99, 99, 99)
3740114254432845378355200L
So, the value is definitely larger.
Upvotes: 1
Views: 1337
Reputation: 37616
The problem is here:
unsigned long long low = 1;
// Side note: This is simply (2ULL << 62) - 1
unsigned long long high = (unsigned long long)(pow(2, 63)) - 1;
unsigned long long n;
while (/* irrelevant */) {
n = (low + high) / 2;
// Some stuff that do not modify n...
f(n, a, b, c) // <-- Here!
}
In the first iteration, you have low = 1
and high = 2^63 - 1
, which mean that n = 2^63 / 2 = 2^62
. Now, let's look at f
:
#define f(n, a, b, c) (/* I do not care about this... */ + c*n*n*n)
You have n^3
in f
, so for n = 2^62
, n^3 = 2^186
, which is probably way too large for your unsigned long long
(which is likely to be 64-bits long).
The main issue here is overflow when doing the binary search, so you should simply handle the overflowing case separatly.
Preamble: I am using ull_t
because I am lazy, and you should avoid macro in C++, prefer using a function and let the compiler inline it. Also, I prefer a loop against using the log
function to compute the log2 of an unsigned long long
(see the bottom of this answer for the implementation of log2
and is_overflow
).
using ull_t = unsigned long long;
constexpr auto f (ull_t n, ull_t a, ull_t b, ull_t c) {
if (n == 0ULL) { // Avoid log2(0)
return 0ULL;
}
if (is_overflow(n, a, b, c)) {
return 0ULL;
}
return a * n + b * n * log2(n) + c * n * n * n;
}
Here is slightly modified binary search version:
constexpr auto find_n (ull_t k, ull_t a, ull_t b, ull_t c) {
constexpr ull_t max = std::numeric_limits<ull_t>::max();
auto lb = 1ULL, ub = (1ULL << 63) - 1;
while (lb <= ub) {
if (ub > max - lb) {
// This should never happens since ub < 2^63 and lb <= ub so lb + ub < 2^64
return 0ULL;
}
// Compute middle point (no overflow guarantee).
auto tn = (lb + ub) / 2;
// If there is an overflow, then change the upper bound.
if (is_overflow(tn, a, b, c)) {
ub = tn - 1;
}
// Otherwize, do a standard binary search...
else {
auto val = f(tn, a, b, c);
if (val < k) {
lb = tn + 1;
}
else if (val > k) {
ub = tn - 1;
}
else {
return tn;
}
}
}
return 0ULL;
}
As you can see, there is only one test that is relevant here, which is is_overflow(tn, a, b, c)
(the first test regarding lb + ub
is irrelevant here since ub < 2^63
and lb <= ub < 2^63
so ub + lb < 2^64
which is ok for unsigned long long
in our case).
#include <limits>
#include <type_traits>
using ull_t = unsigned long long;
template <typename T,
typename = std::enable_if_t<std::is_integral<T>::value>>
constexpr auto log2 (T n) {
T log = 0;
while (n >>= 1) ++log;
return log;
}
constexpr bool is_overflow (ull_t n, ull_t a, ull_t b, ull_t c) {
ull_t max = std::numeric_limits<ull_t>::max();
if (n > max / a) {
return true;
}
if (n > max / b) {
return true;
}
if (b * n > max / log2(n)) {
return true;
}
if (c != 0) {
if (n > max / c) return true;
if (c * n > max / n) return true;
if (c * n * n > max / n) return true;
}
if (a * n > max - c * n * n * n) {
return true;
}
if (a * n + c * n * n * n > max - b * n * log2(n)) {
return true;
}
return false;
}
constexpr auto f (ull_t n, ull_t a, ull_t b, ull_t c) {
if (n == 0ULL) {
return 0ULL;
}
if (is_overflow(n, a, b, c)) {
return 0ULL;
}
return a * n + b * n * log2(n) + c * n * n * n;
}
constexpr auto find_n (ull_t k, ull_t a, ull_t b, ull_t c) {
constexpr ull_t max = std::numeric_limits<ull_t>::max();
auto lb = 1ULL, ub = (1ULL << 63) - 1;
while (lb <= ub) {
if (ub > max - lb) {
return 0ULL; // Problem here
}
auto tn = (lb + ub) / 2;
if (is_overflow(tn, a, b, c)) {
ub = tn - 1;
}
else {
auto val = f(tn, a, b, c);
if (val < k) {
lb = tn + 1;
}
else if (val > k) {
ub = tn - 1;
}
else {
return tn;
}
}
}
return 0ULL;
}
Below is a little piece of code that you can use to check if the above code at compile time (since everything is constexpr
):
template <unsigned long long n, unsigned long long a,
unsigned long long b, unsigned long long c>
struct check: public std::true_type {
enum {
k = f(n, a, b, c)
};
static_assert(k != 0, "Value out of bound for (n, a, b, c).");
static_assert(n == find_n(k, a, b, c), "");
};
template <unsigned long long a,
unsigned long long b,
unsigned long long c>
struct check<0, a, b, c>: public std::true_type {
static_assert(a != a, "Ambiguous values for n when k = 0.");
};
template <unsigned long long n>
struct check<n, 0, 0, 0>: public std::true_type {
static_assert(n != n, "Ambiguous values for n when a = b = c = 0.");
};
#define test(n, a, b, c) static_assert(check<n, a, b, c>::value, "");
test(1000, 99, 99, 0);
test(1000, 99, 99, 99);
test(453333, 99, 99, 99);
test(495862, 99, 99, 9);
test(10000000, 1, 1, 0);
Note: The maximum value of k
is about 2^63
, so for a given triplet (a, b, c)
, the maximum value of n
is the one such as f(n, a, b, c) < 2 ^ 63
and f(n + 1, a, b, c) >= 2 ^ 63
. For a = b = c = 99
, this maximum value is n = 453333
(empirically found), which is why I tested it above.
Upvotes: 2