Reputation: 500
I have the following data
countrycols = alljson[,c("country_gc_str","country_ipapi_str","country_tm_str")]
head(countrycols)
country_gc_str country_ipapi_str country_tm_str
1 <NA> RU RU
2 <NA> CN CN
3 US US US
4 <NA> CD CG
5 <NA> DE DE
6 <NA> <NA> NG
I want to create a new column country_final_str which gets filled with country data in order of following preference:
country_gc_str
country_ipapi_str
country_tm_str
I am also characterizing the country income level using the following:
wbURL <- "http://api.worldbank.org/countries?per_page=304"
xmlAPI <- xmlParse(wbURL)
xmlDF <- xmlToDataFrame(xmlAPI)
xmlDF$iso2CodeChar <- as.character(xmlDF$iso2Code)
xmlDF$incomeLevelChar <- as.character(xmlDF$incomeLevel)
incomexml <- xmlDF[,c("iso2CodeChar","incomeLevelChar")]
incomexmltable <- as.data.table(incomexml)
I have the following for-loop, but it is taking forever as I have over a million records:
alljson$country_final_str <- alljson$country_gc_str
alljson$income_level <- NA
for (i in 1:length (alljson$country_final_str))
{
if (is.na(alljson$country_final_str [i]))
{
alljson$country_final_str [i] = alljson$country_ipapi_str [i];
}
if (is.na(alljson$country_final_str [i]))
{
alljson$country_final_str [i] = alljson$country_tm_str [i];
}
a<-incomexmltable[iso2CodeChar==alljson$country_final_str [i]]$incomeLevelChar
if(length(a)==0)
{
alljson$income_level [i] <- NA
} else {
alljson$income_level [i] <- a
}
}
Any thoughts for improving the efficiency/getting rid of the for loop? I cannot think of a way to apply/lapply/tapply
, and I am on Windows so my efforts to parallelize my code using doParallel
and doSNOW
have failed.
See below by @thelatemail for correct answer to the column question. For the country income level, I performed:
allcountries <- unique(alljson$country_final_str)
alljson$country_income_str <- NA
sum(!is.na(countrycode(allcountries, "iso2c", "country.name")))
for (i in 1:length(allcountries))
{
a<-incomexmltable[iso2CodeChar==allcountries[i]]$incomeLevelChar
if(length(a)==0)
{
alljson$country_income_str[which(alljson$country_final_str==allcountries[i])] <- NA
} else {
alljson$country_income_str[which(alljson$country_final_str==allcountries[i])] <- a
}
alljson$country_income_str
}
Upvotes: 0
Views: 43
Reputation: 93908
Here's an attempt using matrix indexing after picking the first non-missing value in the three variables:
countrycols[
cbind(
seq_len(nrow(countrycols)),
max.col(replace( -col(countrycols), is.na(countrycols), -Inf))
)
]
#[1] "RU" "CN" "US" "CD" "DE" "NG"
To explain the logic, break down each line:
-col(countrycols)
# [,1] [,2] [,3]
#[1,] -1 -2 -3
#[2,] -1 -2 -3
#[3,] -1 -2 -3
#[4,] -1 -2 -3
#[5,] -1 -2 -3
#[6,] -1 -2 -3
replace( -col(countrycols), is.na(countrycols), -Inf)
# [,1] [,2] [,3]
#[1,] -Inf -2 -3
#[2,] -Inf -2 -3
#[3,] -1 -2 -3
#[4,] -Inf -2 -3
#[5,] -Inf -2 -3
#[6,] -Inf -Inf -3
(colindex <- max.col(replace( -col(countrycols), is.na(countrycols), -Inf)) )
#[1] 2 2 1 2 2 3
cbind(rowindex=seq_len(nrow(countrycols)), colindex)
# rowindex colindex
#[1,] 1 2
#[2,] 2 2
#[3,] 3 1
#[4,] 4 2
#[5,] 5 2
#[6,] 6 3
This final matrix is used to subset each row/col combination out of the original list.
Where countrycols
was:
structure(list(country_gc_str = c(NA, NA, "US", NA, NA, NA),
country_ipapi_str = c("RU", "CN", "US", "CD", "DE", NA),
country_tm_str = c("RU", "CN", "US", "CG", "DE", "NG")), .Names = c("country_gc_str",
"country_ipapi_str", "country_tm_str"), row.names = c("1", "2",
"3", "4", "5", "6"), class = "data.frame")
Upvotes: 4