Reputation: 3949
I am trying to create a program which will classify a point as either 1
or 0
using Tensorflow. I am trying to create an oval shape around the center of this plot, where the blue dots are:
Everything in the oval should be classified as 1
, every thing else should be 0
. In the graph above, the blue dots are 1
s and the red x's are 0
s.
However, every time I try to classify a point, it always choses 1
, even if it was a point I trained it with, saying it was 0
.
My question is simple: Why is the guess always 1
, and what am I doing wrong or should do differently to fix this problem? This is my first machine learning problem I have tried without a tutorial, so I really don't know much about this stuff.
I'd appreciate any help you can give, thanks!
Here's my code:
#!/usr/bin/env python3
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
training_in = numpy.array([[0, 0], [1, 1], [2, 0], [-2, 0], [-1, -1], [-1, 1], [-1.5, 1], [3, 3], [3, 0], [-3, 0], [0, -3], [-1, 3], [1, -2], [-2, -1.5]])
training_out = numpy.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
def transform_data(x):
return [x[0], x[1], x[0]**2, x[1]**2, x[0]*x[1]]
new_training_in = numpy.apply_along_axis(transform_data, 1, training_in)
feature_count = new_training_in.shape[1]
x = tf.placeholder(tf.float32, [None, feature_count])
y = tf.placeholder(tf.float32, [None, 1])
W = tf.Variable(tf.zeros([feature_count, 1]))
b = tf.Variable(tf.zeros([1]))
guess = tf.nn.softmax(tf.matmul(x, W) + b)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.matmul(x, W) + b, y))
opti = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
for (item_x, item_y) in zip(new_training_in, training_out):
sess.run(opti, feed_dict={ x: [item_x], y: [[item_y]]})
print(sess.run(W))
print(sess.run(b))
plt.plot(training_in[:6, 0], training_in[:6, 1], 'bo')
plt.plot(training_in[6:, 0], training_in[6:, 1], 'rx')
results = sess.run(guess, feed_dict={ x: new_training_in })
for i in range(training_in.shape[0]):
xx = [training_in[i:,0]]
yy = [training_in[i:,1]]
res = results[i]
# this always prints `[ 1.]`
print(res)
# uncomment these lines to see the guesses
# if res[0] == 0:
# plt.plot(xx, yy, 'c+')
# else:
# plt.plot(xx, yy, 'g+')
plt.show()
Upvotes: 2
Views: 564
Reputation: 11895
The problem occurs when you use softmax_cross_entropy_with_logits. In your concrete case, both logits
and labels
should have shape [batch_size, number_of_labels=2]
.
Note that your tensors logits=tf.matmul(x, W) + b
and labels=y
have shape [batch_size, 1]
, so Tensorflow is assuming that number_of_labels=1
. That's why your guess is always the same.
A) You could solve this problem by encoding training_out
as a one-hot vector. I recommend using np.eye()
to achieve that:
training_out = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
training_out = numpy.eye(2)[training_out]
Then, you will need to make the following changes:
y = tf.placeholder(tf.float32, [None, 2])
W = tf.Variable(tf.zeros([feature_count, 2]))
b = tf.Variable(tf.zeros([2]))
...
for i in range(1000):
for (item_x, item_y) in zip(new_training_in, training_out):
sess.run(opti, feed_dict={x: [item_x], y: [item_y]})
...
results = sess.run(guess, feed_dict={x: new_training_in})[:,1]
B) Alternatively, you could use sparse_softmax_cross_entropy_with_logits, which allows labels
to have shape [batch_size]
. I've tweaked your code to make it work in this way:
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
training_in = numpy.array(
[[0, 0], [1, 1], [2, 0], [-2, 0], [-1, -1], [-1, 1], [-1.5, 1], [3, 3], [3, 0], [-3, 0], [0, -3], [-1, 3], [1, -2],
[-2, -1.5]])
training_out = numpy.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
def transform_data(x):
return [x[0], x[1], x[0] ** 2, x[1] ** 2, x[0] * x[1]]
new_training_in = numpy.apply_along_axis(transform_data, 1, training_in)
feature_count = new_training_in.shape[1]
x = tf.placeholder(tf.float32, [None, feature_count])
y = tf.placeholder(tf.int32, [None])
W = tf.Variable(tf.zeros([feature_count, 2]))
b = tf.Variable(tf.zeros([2]))
guess = tf.nn.softmax(tf.matmul(x, W) + b)
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(tf.matmul(x, W) + b, y))
opti = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
for (item_x, item_y) in zip(new_training_in, training_out):
sess.run(opti, feed_dict={x: [item_x], y: [item_y]})
print(sess.run(W))
print(sess.run(b))
plt.plot(training_in[:6, 0], training_in[:6, 1], 'bo')
plt.plot(training_in[6:, 0], training_in[6:, 1], 'rx')
results = sess.run(guess, feed_dict={x: new_training_in})
for i in range(training_in.shape[0]):
xx = [training_in[i:, 0]]
yy = [training_in[i:, 1]]
res = results[i]
# this always prints `[ 1.]`
print(res)
# uncomment these lines to see the guesses
if res[0] == 0:
plt.plot(xx, yy, 'c+')
else:
plt.plot(xx, yy, 'g+')
plt.show()
Upvotes: 1