Reputation: 13753
I am able to write it into
ORC
PARQUET
directly and
TEXTFILE
AVRO
using additional dependencies from databricks.
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>1.5.0</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-avro_2.10</artifactId>
<version>2.0.1</version>
</dependency>
Sample code:
SparkContext sc = new SparkContext(conf);
HiveContext hc = new HiveContext(sc);
DataFrame df = hc.table(hiveTableName);
df.printSchema();
DataFrameWriter writer = df.repartition(1).write();
if ("ORC".equalsIgnoreCase(hdfsFileFormat)) {
writer.orc(outputHdfsFile);
} else if ("PARQUET".equalsIgnoreCase(hdfsFileFormat)) {
writer.parquet(outputHdfsFile);
} else if ("TEXTFILE".equalsIgnoreCase(hdfsFileFormat)) {
writer.format("com.databricks.spark.csv").option("header", "true").save(outputHdfsFile);
} else if ("AVRO".equalsIgnoreCase(hdfsFileFormat)) {
writer.format("com.databricks.spark.avro").save(outputHdfsFile);
}
Is there any way to write dataframe into hadoop SequenceFile and RCFile?
Upvotes: 6
Views: 1483
Reputation: 683
You can use void saveAsObjectFile(String path)
to save a RDD
as a SequenceFile of serialized objects. So in your case you have to to retrieve the RDD
from the DataFrame
:
JavaRDD<Row> rdd = df.javaRDD;
rdd.saveAsObjectFile(outputHdfsFile);
Upvotes: 2