Reputation: 33
My aim is to detect the largest rectangle in an image, whether its skewed or not. After some research and googling I came up with a code that theoretically should work, however in half of the cases I see puzzling results.
I used OpenCV for Android, here is the Code:
private void find_parallels() {
Utils.bitmapToMat(selectedPicture,img);
Mat temp = new Mat();
Imgproc.resize(img,temp,new Size(640,480));
img = temp.clone();
Mat imgGray = new Mat();
Imgproc.cvtColor(img,imgGray,Imgproc.COLOR_BGR2GRAY);
Imgproc.GaussianBlur(imgGray,imgGray,new Size(5,5),0);
Mat threshedImg = new Mat();
Imgproc.adaptiveThreshold(imgGray,threshedImg,255,Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C,Imgproc.THRESH_BINARY,11,2);
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Mat imageContours = imgGray.clone();
Imgproc.cvtColor(imageContours,imageContours,Imgproc.COLOR_GRAY2BGR);
Imgproc.findContours(threshedImg,contours,hierarchy,Imgproc.RETR_TREE,Imgproc.CHAIN_APPROX_SIMPLE);
max_area = 0;
int num = 0;
for (int i = 0; i < contours.size(); i++) {
area = Imgproc.contourArea(contours.get(i));
if (area > 100) {
MatOfPoint2f mop = new MatOfPoint2f(contours.get(i).toArray());
peri = Imgproc.arcLength(mop, true);
Imgproc.approxPolyDP(mop, approx, 0.02 * peri, true);
if(area > max_area && approx.toArray().length == 4) {
biggest = approx;
num = i;
max_area = area;
}
}
}
selectedPicture = Bitmap.createBitmap(640,480, Bitmap.Config.ARGB_8888) ;
Imgproc.drawContours(img,contours,num,new Scalar(0,0,255));
Utils.matToBitmap(img, selectedPicture);
imageView1.setImageBitmap(selectedPicture);}
In some cases it works excellent as can be seen in this image(See the white line between monitor bezel and screen.. sorry for the color):
Example that works:
However when in this image, and most images where the screen is greyish it gives crazy result.
Example that doesn't work:
Upvotes: 0
Views: 313
Reputation: 10852
Try use morphology, dilate and then erode with same kernel should make it better. Or use pyrDown + pyrUp, or just blur it.
In short use low-pass filter class of methods, because your object of interest is much larger than noise.
Upvotes: 1