Arij SEDIRI
Arij SEDIRI

Reputation: 2158

How to do a full Outer Join of two RDDs with PySpark?

I'm looking for a way to combine two RDDs by key.

Given :

x = sc.parallelize([('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', 'FR', '75001'),
                    ('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', 'TN', '8160'),
                   ]
                  )

y = sc.parallelize([('_guid_oX6Lu2xxHtA_T93sK6igyW5RaHH1tAsWcF0RpNx_kUQ=', 'JmJCFu3N'),
                    ('_guid_hG88Yt5EUsqT8a06Cy380ga3XHPwaFylNyuvvqDslCw=', 'KNPQLQth'),
                    ('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', 'KlGZj08d'),
                   ]
                  )

So I have 3 types of information : An ID, a country code and a postal code. I want a full outer join of my RDDs. This is my code :

sorted(x.fullOuterJoin(y, numPartitions = None).collect())

And this is the result :

[('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', ('TN', None)),
 ('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', ('FR', 'KlGZj08d')),
 ('_guid_hG88Yt5EUsqT8a06Cy380ga3XHPwaFylNyuvvqDslCw=', (None, 'KNPQLQth')),
 ('_guid_oX6Lu2xxHtA_T93sK6igyW5RaHH1tAsWcF0RpNx_kUQ=', (None, 'JmJCFu3N'))]

It's strange that postal codes disappeared after the join ! What might be wrong ?

My result should be ideally look like this :

[('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', ('TN', '8160', None)),
 ('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', ('FR', '75001', 'KlGZj08d')),
 ('_guid_hG88Yt5EUsqT8a06Cy380ga3XHPwaFylNyuvvqDslCw=', (None, None, 'KNPQLQth')),
 ('_guid_oX6Lu2xxHtA_T93sK6igyW5RaHH1tAsWcF0RpNx_kUQ=', (None, None, 'JmJCFu3N'))]  

I tried to do other thing :

x.union(y).collect()

which gives :

[('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', 'FR', '75001'),
 ('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', 'TN', '8160'),
 ('_guid_oX6Lu2xxHtA_T93sK6igyW5RaHH1tAsWcF0RpNx_kUQ=', 'JmJCFu3N'),
 ('_guid_hG88Yt5EUsqT8a06Cy380ga3XHPwaFylNyuvvqDslCw=', 'KNPQLQth'),
 ('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', 'KlGZj08d')]

And I want to do now a groupByKey or a reduceByKey.

This is the code which gives an error message :

sorted(x.union(y).groupByKey().mapValues(list).collect())

However, the part x.union(y).groupByKey() seemed to work..

enter image description here

Is there a way to print the result ? (collect() doesn't work) Any help appreciated. Thx !

Upvotes: 1

Views: 1183

Answers (2)

Arij SEDIRI
Arij SEDIRI

Reputation: 2158

I found a solution ! Nevertheless, this solution is not entirely satisfactory for what I want to do.

So :

x = sc.parallelize([('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', 'FR', '75001'),
                ('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', 'TN', '8160'),
               ]
              )
y = sc.parallelize([('_guid_oX6Lu2xxHtA_T93sK6igyW5RaHH1tAsWcF0RpNx_kUQ=', 'JmJCFu3N'),
                ('_guid_hG88Yt5EUsqT8a06Cy380ga3XHPwaFylNyuvvqDslCw=', 'KNPQLQth'),
                ('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', 'KlGZj08d'),
               ]
              )

I created a function in order to specify my key which will be to my rdd named "x" :

def get_keys(rdd):

    new_x = rdd.map(lambda item: (item[0], (item[1], item[2])))
    return new_x

new_x = get_keys(x)

which gives :

[('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', ('FR', '75001')),
 ('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', ('TN', '8160'))]

Then :

new_x.union(y).map(lambda (x, y): (x, [y])).reduceByKey(lambda p, q : p + q).collect()

The result :

[('_guid_oX6Lu2xxHtA_T93sK6igyW5RaHH1tAsWcF0RpNx_kUQ=', ['JmJCFu3N']),
 ('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', [('FR', '75001'), 'KlGZj08d']),
 ('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', [('TN', '8160')]),
 ('_guid_hG88Yt5EUsqT8a06Cy380ga3XHPwaFylNyuvvqDslCw=', ['KNPQLQth'])]

What I want to have is :

[('_guid_oX6Lu2xxHtA_T93sK6igyW5RaHH1tAsWcF0RpNx_kUQ=', (None, None, 'JmJCFu3N')),
 ('_guid_YWKnKkcrg_Ej0icb07bhd-mXPjw-FcPi764RRhVrOxE=', ('FR', '75001', 'KlGZj08d')),
 ('_guid_XblBPCaB8qx9SK3D4HuAZwO-1cuBPc1GgfgNUC2PYm4=', ('TN', '8160', None)),
 ('_guid_hG88Yt5EUsqT8a06Cy380ga3XHPwaFylNyuvvqDslCw=', (None, None, 'KNPQLQth'))]  

Upvotes: 0

Morito
Morito

Reputation: 93

There is cogroup which can be useful in some situations:

 cogrouped = x.cogroup(y)

 cogrouped.mapValues(lambda x: (list(x[0]), list(x[1]))).collect()

Upvotes: 1

Related Questions