Reputation: 5480
I have created two data frames in pyspark
like below. In these data frames
I have column id
. I want to perform a full outer join
on these two data frames.
valuesA = [('Pirate',1),('Monkey',2),('Ninja',3),('Spaghetti',4)]
a = sqlContext.createDataFrame(valuesA,['name','id'])
a.show()
+---------+---+
| name| id|
+---------+---+
| Pirate| 1|
| Monkey| 2|
| Ninja| 3|
|Spaghetti| 4|
+---------+---+
valuesB = [('dave',1),('Thor',2),('face',3), ('test',5)]
b = sqlContext.createDataFrame(valuesB,['Movie','id'])
b.show()
+-----+---+
|Movie| id|
+-----+---+
| dave| 1|
| Thor| 2|
| face| 3|
| test| 5|
+-----+---+
full_outer_join = a.join(b, a.id == b.id,how='full')
full_outer_join.show()
+---------+----+-----+----+
| name| id|Movie| id|
+---------+----+-----+----+
| Pirate| 1| dave| 1|
| Monkey| 2| Thor| 2|
| Ninja| 3| face| 3|
|Spaghetti| 4| null|null|
| null|null| test| 5|
+---------+----+-----+----+
I want to have a result like below when I do a full_outer_join
+---------+-----+----+
| name|Movie| id|
+---------+-----+----+
| Pirate| dave| 1|
| Monkey| Thor| 2|
| Ninja| face| 3|
|Spaghetti| null| 4|
| null| test| 5|
+---------+-----+----+
I have done like below but getting some different result
full_outer_join = a.join(b, a.id == b.id,how='full').select(a.id, a.name, b.Movie)
full_outer_join.show()
+---------+----+-----+
| name| id|Movie|
+---------+----+-----+
| Pirate| 1| dave|
| Monkey| 2| Thor|
| Ninja| 3| face|
|Spaghetti| 4| null|
| null|null| test|
+---------+----+-----+
As you can see that I am missing Id
5
in my result data frame
.
How can I achieve what I want?
Upvotes: 24
Views: 69414
Reputation: 23119
You can either reaname the column id from the dataframe b and drop later or use the list in join condition.
a.join(b, ['id'], how='full')
Output:
+---+---------+-----+
|id |name |Movie|
+---+---------+-----+
|1 |Pirate |dave |
|3 |Ninja |face |
|5 |null |test |
|4 |Spaghetti|null |
|2 |Monkey |Thor |
+---+---------+-----+
Upvotes: 7
Reputation: 215127
Since the join columns have the same name, you can specify the join columns as a list:
a.join(b, ['id'], how='full').show()
+---+---------+-----+
| id| name|Movie|
+---+---------+-----+
| 5| null| test|
| 1| Pirate| dave|
| 3| Ninja| face|
| 2| Monkey| Thor|
| 4|Spaghetti| null|
+---+---------+-----+
Or coalesce
the two id
columns:
import pyspark.sql.functions as F
a.join(b, a.id == b.id, how='full').select(
F.coalesce(a.id, b.id).alias('id'), a.name, b.Movie
).show()
+---+---------+-----+
| id| name|Movie|
+---+---------+-----+
| 5| null| test|
| 1| Pirate| dave|
| 3| Ninja| face|
| 2| Monkey| Thor|
| 4|Spaghetti| null|
+---+---------+-----+
Upvotes: 40