Reputation: 1322
I have 3d array m*n*k
and for every 2d-layer I want to take a subarray of size i*j
. I have an array c with size 2*k
of coordinates of starts of slices for every layer. Is there nice and easy way to get what I need without any loops?
Example:
test = np.arange(18).reshape((3,3,2))
c = np.array([[0,1], [0, 1]])
test[:,:,0] = array([[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
test[:,:,1] = array([[ 1, 3, 5],
[ 7, 9, 11],
[13, 15, 17]])
I want to get an array
[[[ 0, 9],
[ 2, 11]],
[[ 6, 15],
[ 8, 17]]]
Solution with loop:
h=2
w=2
layers = 2
F = np.zeros((h,w,layers))
for k in range(layers):
F[:,:,k] = test[c[0,k]:c[0,k]+h, c[1,k]:c[1,k]+w, k]
Upvotes: 1
Views: 327
Reputation: 221614
Here's a vectorized approach making use of broadcasting
and advanced-indexing
-
d0,d1,d2 = np.ogrid[:h,:w,:layers]
out = test[d0+c[0],d1+c[1],d2]
Sample run -
In [112]: test = np.arange(200).reshape((10,10,2))
...: c = np.array([[0,1], [0, 1]])
...:
In [113]: h=4
...: w=5
...: layers = 2
...: F = np.zeros((h,w,layers))
...: for k in range(layers):
...: F[:,:,k] = test[c[0,k]:c[0,k]+h, c[1,k]:c[1,k]+w, k]
...:
In [114]: d0,d1,d2 = np.ogrid[:h,:w,:layers]
...: out = test[d0+c[0],d1+c[1],d2]
...:
In [115]: np.allclose(F, out)
Out[115]: True
Upvotes: 1