Reputation: 719
I want to "select" specific rows and columns of a 2D-np.array and don't know how to do this efficiently.
import numpy as np
array = np.random.rand(4*100,4*360)
lon_min = np.array([-72.5, -72.5, -70, -67.5, -65, -62.5, -60, -57.5, -55, -52.5, -50])
lon_max = lon_min + 2.5
lat_min = np.array([-10, -7.5, -5, -4, -3, -3, -2, -1, -1, -1, -1])
lat_max = lat_min + 2.5
indices_lon_min = (180+lon_min)*4
indices_lat_min = (50-lat_min)*4
indices_lon_max = indices_lon_min + 4*2.5
indices_lat_max = indices_lat_min -4*2.5
> indices_lat_min = [240. 230. 220. 216. 212. 212. 208. 204. 204. 204. 204.]
> indices_lat_max = [230. 220. 210. 206. 202. 202. 198. 194. 194. 194. 194.]
> indices_lon_min = [430. 430. 440. 450. 460. 470. 480. 490. 500. 510. 520.]
> indices_lon_max = [440. 440. 450. 460. 470. 480. 490. 500. 510. 520. 530.]
I hoped there is something like:
array[indices_lat_min.astype(int): indices_lat_max.astype(int), indices_lon_min.astype(int):indices_lon_max.astype(int)]
Basically I want to achieve
array[240:230, 430:440]
but with multiple "slices".
Upvotes: 3
Views: 87
Reputation: 4537
Maybe something like this:
array[list(map(range, indices_lat_min.astype(int), indices_lat_max.astype(int))),
list(map(range, indices_lon_min.astype(int), indices_lon_max.astype(int)))]
This is basically your idea, I just used map
to get all the min max pairs in the index lists.
For a descending range:
array[list(map(range, indices_lat_min.astype(int), indices_lat_max.astype(int), np.full(indices_lat_max.size, -1))),
list(map(range, indices_lon_min.astype(int), indices_lon_max.astype(int),))]
Upvotes: 1