Reputation: 323
I am setting up an internal Jupyterhub on a multi GPU server. Jupyter access is provided through a docker instance. I'd like to limit access for each user to no more than a single GPU. I'd appreciate any suggestion or comment. Thanks.
Upvotes: 3
Views: 9434
Reputation: 7717
There are 3 options.
According to official documentation
docker run --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=2,3
based on a popular post
nvidia-docker run .... -e CUDA_VISIBLE_DEVICES=0,1,2
(it works with tensorflow)
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2"
Upvotes: 2
Reputation: 129
The problem can be solved in this way, just add the environment variable “NV_GPU” before “nvidia-docker” as follow:
[root@bogon ~]# NV_GPU='4,5' nvidia-docker run -dit --name tf_07 tensorflow/tensorflow:latest-gpu /bin/bash
e04645c2d7ea658089435d64e72603f69859a3e7b6af64af005fb852473d6b56
[root@bogon ~]# docker attach tf_07
root@e04645c2d7ea:/notebooks#
root@e04645c2d7ea:/notebooks# ll /dev
total 4
drwxr-xr-x 5 root root 460 Dec 29 03:52 ./
drwxr-xr-x 22 root root 4096 Dec 29 03:52 ../
crw--w---- 1 root tty 136, 0 Dec 29 03:53 console
lrwxrwxrwx 1 root root 11 Dec 29 03:52 core -> /proc/kcore
lrwxrwxrwx 1 root root 13 Dec 29 03:52 fd -> /proc/self/fd/
crw-rw-rw- 1 root root 1, 7 Dec 29 03:52 full
drwxrwxrwt 2 root root 40 Dec 29 03:52 mqueue/
crw-rw-rw- 1 root root 1, 3 Dec 29 03:52 null
crw-rw-rw- 1 root root 245, 0 Dec 29 03:52 nvidia-uvm
crw-rw-rw- 1 root root 245, 1 Dec 29 03:52 nvidia-uvm-tools
crw-rw-rw- 1 root root 195, 4 Dec 29 03:52 nvidia4
crw-rw-rw- 1 root root 195, 5 Dec 29 03:52 nvidia5
crw-rw-rw- 1 root root 195, 255 Dec 29 03:52 nvidiactl
lrwxrwxrwx 1 root root 8 Dec 29 03:52 ptmx -> pts/ptmx
drwxr-xr-x 2 root root 0 Dec 29 03:52 pts/
crw-rw-rw- 1 root root 1, 8 Dec 29 03:52 random
drwxrwxrwt 2 root root 40 Dec 29 03:52 shm/
lrwxrwxrwx 1 root root 15 Dec 29 03:52 stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 Dec 29 03:52 stdin -> /proc/self/fd/0
lrwxrwxrwx 1 root root 15 Dec 29 03:52 stdout -> /proc/self/fd/1
crw-rw-rw- 1 root root 5, 0 Dec 29 03:52 tty
crw-rw-rw- 1 root root 1, 9 Dec 29 03:52 urandom
crw-rw-rw- 1 root root 1, 5 Dec 29 03:52 zero
root@e04645c2d7ea:/notebooks#
or,read nvidia-docker of github's wiki
Upvotes: 1
Reputation: 20726
You can try it with nvidia-docker-compose
version: "2"
services
process1:
image: nvidia/cuda
devices:
- /dev/nvidia0
Upvotes: 2